
MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

WEBTECH

By Aaron Montgomery, Valparaiso, IN

T h re ade d A CGI s i n  Powe rP l an t 
The Monsterworks' Framework

About the author...

Aaron Montgomery is a mathematics professor at Purdue University North Central. He has
been programming as a hobby since 1996 and in his spare time he also enjoys being with his
family and mountain biking. Currently he is working on upgrading the shareware text-editor
Alpha. You can contact Aaron at <agm@purduenc.edu>.

INTRODUCTION

This article describes the Monsterworks' CGI Framework. The framework arose out of
work I did implementing a distance-learning course at Purdue University North Central. I had
written Java applets to allow students to take quizzes over the Internet and there was a need
for a CGI application to collect the student responses. While other frameworks for CGI
applications are available (see the references at the end of this article), the Monsterworks'
Framework provides the following advantages:

• It is written in C++ (instead of C).

• It builds on the PowerPlant framework with which you may already be familiar.

• It provides threaded request handling with little effort by the user.

This article assumes that the reader has some familiarity with the C++ language  and the
PowerPlant application framework. Some background with CGI applications, the C++
container classes and threading might also be helpful since the framework uses these, but you
might be able to get what you need from examining the sample projects. I provide references
that cover these topics at the end of the article. You will need to have a Macintosh Web server
to use the applications produced by the framework. If you have a Macintosh computer with a
permanent IP address, then there are a number of free Web server software packages (e.g.,
Quid Pro Quo).

You may download the source and project files  of the Monsterworks' Framework from
<http://faculty.purduenc.edu/agm/web/cgi.html>. The two projects described below and
the project for building Server Proxy (described in the debugging section) are there now.
Currently, work is underway to provide a Web interface to the SQL database provided by dtF.
You will be able to download that project at the same location when it is complete. This
framework requires Apple's Universal Headers (version 3.2), the PowerPlant framework
(version 1.9.3) and the C++ standard library (MSL version 4.1.05).



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

The next section, The Setting: CGI Basics, will provide a brief introduction to CGI
programming which should be sufficient to allow you to understand the remainder of the
article. Following this, the article presents some facilities the framework offers in The Characters
of Monsterworks' Framework. Once you have been introduced to the basics of the framework the
section Act One: CGI Base presents a simple CGI program that I built using the framework.
Following this is an Intermission: Debugging and Error Handling where the article discusses some
issues in building CGI programs with the framework. The next section, Act Two: CGI Mailer,
presents a more complicated example of a CGI program. The last section, Behind the Scenes,
then describes some of the code which implements the framework. The article concludes with
a number of references on the topic of CGI programming and PowerPlant.

THE SETTING: CGI BASICS

This section provides a quick survey of CGI programming as well as some of the details of
CGI programming on the Macintosh. If you are already familiar with CGI programming, you
can skip to the next section. You can find a complete discussion of this subject in the references
provided at the end of this article.

The primary task of a Web server is to retrieve files for a Web browser. However, Web
servers treat some types of documents differently. When a Web browser requests a CGI
application, the server does not just return the contents of the file. Instead, it launches the
application and passes it information about the request. The application executes and returns a
response to the Web server and the server passes the response back to the Web browser as if it
were the contents of the file. To perform as a CGI application, an application must accomplish
three tasks: decode the data from the server; perform application specific processing; return
data to the server.

The actual data transfer between the Web server and the CGI application is platform
dependent and Macintosh machines use AppleEvent s. The Web server will break the data
down into a number of different CGI variables and the enumeration ECGIKeys  (found in
UtCGIKeys.h ) lists the names of the variables available to CGI applications working with a
WebSTAR style server. The three most commonly used CGI variables are ECGIKey_POST,
ECGIKey_SEARCH and ECGIKey_PATH. The descriptions of these variables will use the
following URL:

<http://www.server.com/app.cgi$path%20data?keyword+another>

ECGIKey_POST:  A Web browser generates this variable in response to an HTML <FORM> tag
with the "post" action or a Java applet can send data using this variable. This variable can be
up to 32K in length (longer than any other CGI variable).

ECGIKey_SEARCH: A Web browser generates this variable in response to an HTML
<ISINDEX>  tag or in response to an HTML <FORM> tag with the "get" action. Alternatively,
the HTML author can include it in the URL following a question mark. In the sample URL,
the ECGIKey_SEARCH variable would contain the string "keyword+another".

ECGIKey_PATH:  The HTML author can include this variable in the URL following a dollar
sign. In the sample URL, the ECGIKey_PATH variable would contain the string
"path%20data".

The ECGIKey_POST, ECGIKey_SEARCH and ECGIKey_PATH variables will arrive at the
CGI application as www-url-encoded strings. The following is a loose (and slightly inaccurate)
description that will suffice for this article, please see the references for a complete (and



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

accurate) description. The encoding specifies that most non-alphanumeric characters should be
converted to three-character codes of the form "%XX" where the XX is the hexadecimal ASCII
value for the character. In the example above, "path%20data" is the encoded form of
"path data". For <ISINDEX>  data, the data will be a sequence of encoded keywords separated
by unencoded '+' characters. In the example above, the ECGIKey_SEARCH variable has two
keywords: "keyword" and "another". For <FORM> data, the data will be a sequence of key-
value pairs where unencoded '=' characters separate the keys from the values and unencoded
' & '  c h a r a c t e r s  s e p a r a t e  t h e  p a i r s .  F o r  e x a m p l e ,  t h e  s t r i n g
"Thatcher=5%20years&Conor=2%20months" has two pairs: "Thatcher" associated with
"5 years" and "Conor" associated with "2 months".

You can find descriptions of the remaining CGI variables in Appendix C of the WebSTAR 3
Manual. WebSTAR servers encode all of their CGI variables as strings with two exceptions: the
ECGIKey_CONNECTION variable (an SInt32) ; and the ECGIKey_DIRE  variable (an FSSpec).

THE CHARACTERS OF MONSTERWORKS' FRAMEWORK

This section will present the classes of the Monsterworks' Framework that we will use in
the following examples. If you are eager to see actual code, you can skip to the next section,
Act One: CGI Base, and deduce the roles from the uses of the classes in the code. The
descriptions below do not replace the information found in the Monsterworks' API or the
header files included with the projects, but should allow you to understand the sample
projects.

The Monsterworks' Framework will handle the first and third tasks of a CGI application:
decoding data from the server and returning data to the server. The three classes in the
CCGIThreadApp  component handle most of the work: CCGIThread, CCGIApp   and
CCGIFactory . The CCGIThread  object is responsible for handling the CGI requests. The
CCGIApp object is responsible for normal Macintosh application routines. The CCGIFactory
class is responsible for thread management.

Before introducing the classes individually, we discuss the pervasive CheckMe method.
This public virtual  method checks the internal structure of an object and throws an
exception if it finds something wrong. Despite their virtual  declaration, all other class
methods bind the method at compile time (see Listing 1 for examples). The discussion of
CCGIMailApp 's constructor in Act Two: CGI Mailer explains the need for this binding.

CGI Request Handling & CCGIThread

To use the framework you must implement the CCGIThread 's abstract HandleWWWEvent
method in a subclass. For simple CGI applications, this subclass and a small adjustment of
main  is all that is needed to have a working CGI application. The code implementing
CCGIThread  is in CCGIThreadApp.cp  and the article presents some of it in Listing 5.

The CCGIThread 's Parameter  method handles the first task of a CGI application
(decoding data sent from the server). Use Parameter(ECGIKeys)  when the data type is a
string and ECGIKeys  includes the desired CGI variable. Since the AppleEvent  containing the
data is not directly available to the thread, Parameter(AEKeyword, ...)  provides an
inline  wrapper of AEGetParamPtr . This article will use Parameter(ECGIKeys)
exclusively since we won't need to access any non-string data.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

The class UtWWWCodec provides methods to support the decoding of CGI variables. The
method FromWWW will decode an www-url-encoded string and will work with either a C++
string  class or a PowerPlant LStr255 . Since decoding a www-url-encoded string will not
cause the variable to lengthen, FromWWW will not truncate its return value when applied to an
LStr255 .

The UtWWWCodec method StringToPairs  will decode the key-value pairs from an
HTML <FORM> into a FormPairs  object (a multimap<string, string> ). Similarly, the
method StringToWords  will decode the keywords from an HTML <ISINDEX>  query to a
QueryWords  object (a set<string> ). Even if you have no previous experience with these
C++ container classes, you can use the code in the examples below as a guide on iterating
through the contents of these containers as if they were linked lists.

 HandleWWWEvent handles the second task of a CGI application (processing the data). As
stated above, you will need to implement a version of this in your subclass. HandleWWWEvent
returns a void*  and this value will be the return value from the thread's Run method. The
framework does not use this value so you may return nil . The CCGIThread 's Run method
will catch any uncaught exception escaping HandleWWWEvent.

The SetReply  method handles the third task of a CGI application (returning data to the
server). Usually the reply will be the text of an HTML document (along with a HTTP header)
which the server will return to the client's browser. As in the case of the Parameter  method,
SetReply  has two versions, the first, SetReply(AEKeyword, ...) , is an inline wrapper
for the Macintosh Toolbox call AEPutParamPtr . You can use the second, SetReply(const
string&) , if you construct your reply as a C++ str ing  object. This article will use
SetReply(const string&)  exclusively since our replies will all be C++ string  objects.

The class UtHTMLWriter  provides methods to support the generation of HTML
documents. The method HTMLHeader provides a standard HTTP header followed by an
HTML header and the opening <BODY> tag. The first argument provides the title for the
HTML document and the other arguments further customize the page. The method
HTMLFooter  provides the closing </BODY> tag as well as the closing </HTML>  tag. The
Redirect  method takes a single string which should be a complete URL and will generate an
HTML page which redirects the browser to this URL.

Application Routines & CCGIApp

The CCGIApp is a complete class and you can use it directly (see the first example) or you
can use a subclass to provide application-wide functionality such as preferences (see the
second example). The code implementing CCGIApp is in CCGIThreadApp.cp  and the article
presents some of it in Listing 6.

The CCGIApp constructor will terminate the application if you call it twice (it is a singleton
in the terminology of Gamma, et. al. 1995). The CCGIApp destructor is protected  and you
must delete  the CCGIApp with a call to CCGIApp's DeleteApp  method. Together, these
insure that there is at most one CCGIApp in a program and that it was allocated by a call to
new. You can access the single CCGIApp through the static  method CCGIAppP which
returns a pointer to a CCGIApp. This method will return a non-nil  pointer between the call to
CCGIApp's constructor and the call to CCGIApp's DeleteApp  method. The CCGIAppP
method will throw a nil -pointer exception if you call it elsewhere.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

The use of a singleton arises from the following problem. CCGIApp must install an
AppleEvent  Handler and the compiler will need to know the address of this handler (so it
must be a static  method). However, subclasses of CCGIApp should be capable of overriding
this handler (hence it should also be virtual ). The static  pointer solves this problem by
allowing the installed AppleEvent  handler (WWWHandler) to call a virtual function
(HandleWWWEvent) through the pointer.

CCGIApp uses a preference file to determine whether it will use a log file as well as the
name of the log file. The method Log(const LStr255&)  writes data to the log file (if the
preferences indicate that the application should log its activities). Log(const LStr255&)
will update the application's window logs the application name, the date and time and the
argument to the method.

The method LogError(const LStr255&, bool)  handles errors. LogError(const
LStr255&, bool)  first passes the LStr255&  to the Log  method and will indicate an error in
the CGI application's window. If the bool  argument is true , the error is fatal and the
CCGIApp calls its DoQuit  method and then yields to the thread containing the main  function.
This will result in application termination.

Thread Management and CCGIFactory

The CCGIFactory  class is responsible for generating the CCGIApp to be used by the
application as well as managing all the CCGIThread s. The source implementing
CCGIFactory  is in CCGIThreadApp.cp  and the article presents some of it in Listing 7.

 The CCGIFactory  class is a singleton (so you cannot construct two of them) and its
destructor is protected  (so you will use DeleteFactory  to delete  it). As in the case of the
CCGIApp class, access to the single CCGIFac to ry  is through a static  method:
CCGIFactoryP . The only other method you will need to use directly is the CreateApp
method you will use to create a CCGIApp. The framework uses the other methods in
CCGIFactory internally.

Because CCGIFactory  has two abstract methods, you cannot use the class directly, but the
framework provides a template class with default implementations for these methods and we
will use the template in both of our examples. The template takes three parameters: a
CCGIThread  type, a CCGIApp type and a CCGIFactory::CCGITerminator  type. The
template requires the CCGIThread  type because CCGIThread  is an abstract class. The
CCGIApp type defaults to a CCGIApp. We will use this default in Act One: CGI Base and we
will provide our own CCGIApp type in Act Two: CGI Mailer. The framework uses
CCGIFactory::CCGITerminator  internally and you should use the default unless you are
customizing the framework's thread management scheme.

In most cases the template class suffices, but there are a number of situations where you
might want to write your own class. Because the CCGIFactory  has access to all the Web
server data, it could generate different thread types based on this data. For example, if your
CGI application is acting as a front-end to a database, the CCGIFactory  could use a CGI
variable to determine whether to create a thread designed to retrieve data or a thread designed
to update data. As another example, a CCGIFactory  could assign different priorities to the
threads it creates based on the IP address of the browser (you could assign in-house requests a
higher priority). In both cases the switching seems to be peripheral to the processing of the
event or standard application handling and so doesn't belong in the CCGIThread  or CCGIApp
classes.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

ACT ONE: CGI BASE

We are now ready to generate our first CGI application. The "Hello World" application of
the CGI world is the echo application that generates an HTML page listing the data that the
Web server presented to CGI application. The CGI Base  project builds this application (and
works well as stationary for other CGI projects).

This application tests some of the framework's features, in particular, it should: return all
the information posted; allow threading to occur; handle fatal and non-fatal errors correctly.
You can test the application using the ECGIKey_PATH variable. If the ECGIKey_PATH variable
is a positive integer, the CCGIEchoThread  handling the request will sleep for that many
seconds before continuing. If the variable is a negative integer between -1 and -9, then the
CCGIEchoThread  will log an error and then sleep for the negative of the value in seconds
(e.g., a -7 value results in a sleep of 7 seconds). If the variable is a negative integer less than -9,
then the CCGIEchoThread  will log a fatal error and the application will terminate.

To get this application running we need to subclass CCGIThread  and write the function
main .  The code implementing CCGIEchoThread  is in CCGIEchoThread.cp  and the article
presents all of it in Listing 1. The code implementing main  is in main.cp  and the article
presents the code for the function main  in Listing 2.

The constructor of the CCGIEchoThread  passes everything to CCGIThread 's constructor.
It then uses CCGIApp's Log  method to log the thread's creation and the destructor logs the
thread's destruction. The log entries will include the addresses of the object so that we can
verify that the application permits later threads to start processing before the completion of
earlier threads.

There are two utility methods in CCGIEchoThread  which are used to format the CGI
variable values: H2Echo and LineEcho . The only difference between them is that H2Echo
will produce a <H2> HTML heading while LineEcho  places its output with the heading
indicated by a <STRONG> tag.

The HandleWWWEvent method does the CGI processing. To get the most out of threading,
you should call Yield  frequently in your HandleWWWEvent method. The HandleWWWEvent
method presented below checks the ECGIKey_PATH variable to determine if the thread should
sleep or log an error. Then it goes through the CGI variables and writes an HTML page
presenting their values. HandleWWWEvent formats the ECGIKey_POST variable in two styles:
as a raw string or as the result of a <FORM ACTION = "post">  request. Similarly, it formats
the ECGIKey_SEARCH variable in three styles: as a raw string, as the result of a <FORM
ACTION = "get">  request and as the result of an <ISINDEX>  request.

Listing 1: CCGIEchoThread.cp
CCGIEchoThread

CCGIEchoThread::CCGIEchoThread(
const AppleEvent& inEvent,
const AppleEvent& outReply,
long inRefCon)

: CCGIThread(inEvent, outReply, inRefCon)
{

CCGIThread::CheckMe();



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

//Add a log entry to the log file
LStr255 theLogEntry = "Starting Thread @ ";
theLogEntry += reinterpret_cast<long>(this);
CCGIApp::CCGIAppP()->Log(theLogEntry);

}

~CCGIEchoThread
CCGIEchoThread::~CCGIEchoThread(void)
{

try
{

//Add a log entry to the log file
LStr255 theLogEntry = "Ending Thread @ ";
theLogEntry += reinterpret_cast<long>(this);
CCGIApp::CCGIAppP()->Log(theLogEntry);

}
catch (...)
{
}

}

H2Echo
string CCGIEchoThread::H2Echo(

const string& inHeader,
ECGIKeys inParameter) const

{
CCGIEchoThread::CheckMe();

//generate a <H2> heading from first argument
string theResult = "<H2>" + inHeader + "</H2>\r\n";

//add the value of the appropriate CGI parameter
theResult += Parameter(inParameter);

//and a new line
theResult += "\r\n";

//return the string
return theResult;

}

LineEcho
string CCGIEchoThread::LineEcho(

const string& inHeader,
ECGIKeys inParameter) const

{
CCGIEchoThread::CheckMe();

//generate a strong heading from the first argument
string theResult = "<STRONG>" + inHeader +

"</STRONG>\r\n";



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

//add the value of the appropriate CGI parameter
theResult += Parameter(inParameter);

//add a <BR> and a new line
theResult += "<BR>\r\n";

//return the string
return theResult;

}

HandleWWWEvent
void* CCGIEchoThread::HandleWWWEvent(void)
{

CCGIEchoThread::CheckMe();

//get the PATH CGI variable
string theWaitStr = Parameter(CGIKey_PATH);
const int kBaseTen = 10;
//strtol will return 0 if theWaitStr is not an integer
long theWait = strtol(theWaitStr.c_str(), nil, kBaseTen);
if (theWait < 0)
{

//test the error logging facility
bool isFatal = (theWait <= -10);
LStr255 theErrorString

= StringLiteral_("Negative Wait Time");
CCGIApp::CCGIAppP()->LogError(theErrorString, isFatal);
//convert wait to positive
theWait = -theWait;

}

//simulate a lengthy request
Sleep(theWait*1000);

//generate the HTML header for the reply page
string theReply = UtHTMLWriter::HTMLHeader("Your

Request");

//play nicely
Yield();

//generate a <H2> section
//returning the POST CGI variable as a raw string
theReply += H2Echo("Post", CGIKey_POST);

//generate a <H2> section
//returning the POST CGI variable as a <FORM ACTION="post"> request
theReply += "<H2>Post As Form Submission</H2>\r\n";
FormPairs thePairs

= UtWWWCodec::StringToPairs(Parameter(CGIKey_POST));
for (FormPairs::iterator theIterator = thePairs.begin();

theIterator != thePairs.end();



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

++theIterator)
{

theReply += theIterator->first;
theReply += "<FONT COLOR=\"#FF0000\"> = </FONT>";
theReply += theIterator->second;
theReply += "<BR>\r\n";

}

//play nicely
Yield();

//generate a <H2> section
//returning the SEARCH CGI variable as a raw string
theReply += H2Echo("Search", CGIKey_SEARCH);

//generate a <H2> section
//returning the SEARCH CGI variable as a <FORM ACTION="get"> request
theReply += "<H2>Search As Form Submission</H2>\r\n";
thePairs

= UtWWWCodec::StringToPairs(Parameter(CGIKey_SEARCH));
for (FormPairs::iterator theIterator = thePairs.begin();

theIterator != thePairs.end();
++theIterator)

{
theReply += theIterator->first;
theReply += "<FONT COLOR=\"#FF0000\"> = </FONT>";
theReply += theIterator->second;
theReply += "<BR>\r\n";

}

//generate a <H2> section
//returning the SEARCH CGI variable as an <ISINDEX> request
theReply += "<H2>Search As Query Submission</H2>\r\n";
QueryWords theKeywords

= UtWWWCodec::StringToWords(Parameter(CGIKey_SEARCH));
for (QueryWords::iterator theIterator

= theKeywords.begin();
theIterator != theKeywords.end();
++theIterator)

{
theReply += *theIterator;
theReply += "<BR>\r\n";

}

//play nicely
Yield();

//generate a <H2> section
//returning the PATH CGI variable as a raw string
theReply += H2Echo("Path", CGIKey_PATH);
theReply += "\r\n";



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

//play nicely
Yield();

//generate a <H2> section to display the user information
theReply += "<H2>Client Information</H2>\r\n";
theReply += LineEcho("User", CGIKey_USER);
theReply += LineEcho("Pass", CGIKey_PASS);
theReply += LineEcho("Address", CGIKey_CLIENT);

//code omitted
//we go through all of the CGI variables
//that are strings and append them to theReply

theReply += LineEcho("Action", CGIKey_ACTION);
theReply += LineEcho("Action Path", CGIKey_ACTION_PATH);

//play nicely
Yield();

//generate the HTML footer for the reply page
theReply += UtHTMLWriter::HTMLFooter();

//play nicely
Yield();

//return the HTML page to the server
//which will send it to the browser
SetReply(theReply);

//we don't need to pass info to other threads
//so we return nil from this method
return nil;

}

Before turning our attention to main , let me point out that there is one typedef in
CCGIEchoThread.h  which we will use.
typedef TCGIFactory<CCGIEchoThread>CCGIEchoFactory;

Although you could just use a template directly in main , the typedef  is worthwhile for
two reasons: first, it saves the you some typing (especially if you later change your definition)
and second, it guarantees that the template parameters are compatible. The second reason will
become especially important in the next example (Act Two: CGI Mailer) where our
CCGIThread  subclass relies on specialized features of our CCGIApp subclass.

The main  function initializes the Macintosh Toolbox, creates a CCGIEchoFactory  and
uses the factory to produce a CCGIApp. Notice that we do not need to store the locations of
these objects since we have access to them through static  methods. Then main  runs the
application inside a try  block (unlike LApplication s, CCGIApps do not catch all exceptions
in their Run method).  After the application is through running, we call DeleteApp  and
DeleteFactory  to clean up.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

Listing 2: main.cp
main

int main(void)
{

//standard toolbox initialization
InitializeHeap(3);
UQDGlobals::InitializeToolbox(&qd);

//create a factory (actually a CCGIEchoFactory)
//this is probably the only line of code
//you will need to modify
//
//there is only one and we can always
//get to it through the static pointer,
//we don't even need to use a variable
//
//NEW is a debugging macro defined by DebugNew.h
//it calls new
NEW CCGIEchoFactory();
CCGIFactory::CCGIFactoryP()->CheckMe();

//create an app (the factory determines which type exactly)
//again, there is only one and we can always
//get to it through the static pointer
CCGIFactory::CCGIFactoryP()->CreateApp();
CCGIApp::CCGIAppP()->CheckMe();

try
{

//try to run the app
//CCGIApp overrides LApplication's Run() method and
//removes its try-block, so you will need to catch
//exceptions here
CCGIApp::CCGIAppP()->Run();

}
catch (...)
{

//uncaught exceptions are fatal
const bool kIsFatal (true);
CCGIApp::CCGIAppP()->LogError(

StringLiteral_("Uncaught exception in CCGIApp::Run"),
kIsFatal);

}

//delete the application (which will also
//delete any running CCGIThreads)
CCGIApp::CCGIAppP()->DeleteApp();

//delete the factory
CCGIFactory::CCGIFactoryP()->DeleteFactory();

//return that everything went okay



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

return noErr;
}

INTERMISSION: DEBUGGING AND ERROR HANDLING

Now that you can create CGI applications, you need a method to debug them. Unlike
normal Macintosh applications, CGI applications respond to AppleEvent s while running in
the background and this means that you will not interact with them directly. To debug such an
application, you will need to have a method to send it AppleEvent s and the article presents
three such methods in the Debugging subsection.

Once you have debugged your application placed it on the server, it will likely run without
user interaction which means that your error handling code needs to differ from normal
Macintosh error handling code (where you notify the user). You need to be particularly careful
with your code because of the threaded nature of the framework. The article discusses this
issue in the Error Handling subsection below.

Debugging

The most obvious technique for debugging is to set up your own Web server. This provides
the best possible debugging environment since it debugs the CGI application in precisely the
environment in which you will use it. However, there are a number of disadvantages to this
approach. One disadvantage to this is that your computer will need to be on a network. If you
are on a dial-up network, then you will be tying up your phone while you debug your
application. Another disadvantage is that you may run into memory problems (you will need
to have a browser, the Web server, the debugger and your application all running
simultaneously). Yet another disadvantage is that you cannot save the POST data and so you
will need to regenerate it each time.

One way to debug which avoids some of the problems with running your own server is to
use AppleScript to send events to your CGI application. This does not require you to be on a
network or to have many large applications open at once. Furthermore, you can save the
scripts and reuse them when needed. The disadvantage is that you will need to encode the
CGI variables by hand and this is tedious (and hence error prone).

To avoid some of the problems of the previous two solutions, the Monsterworks'
Framework provides a small application called Server Proxy . To use Server Proxy  for
debugging, you launch it (which will create a new document); fill in the data; select the CGI
application and then send the event. You can edit the reply from the CGI application (in
particular, you should remove the HTTP header), save the reply as a text file and view the
reply with a browser. Server Proxy  can www-url-encode <FORM> and <ISINDEX>
variables so that you won't have to do this by hand and Server Proxy  is capable of saving
CGI variables so you won't need to re-enter data from one session to the next.

Probably the best way to debug is to use two methods. Use either AppleScript or Server
Proxy  to get what appears to be a final version. Then exercise this version on an actual Web
server to make sure that it really works.

Now that you have an idea of how to debug, you should be aware of one situation that will
arise when debugging background applications built with PowerPlant. Here are instructions
describing how to reproduce the situation using Server Proxy  and CGI Base .



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

• Set the debugger to put up an alert if an exception is thrown.

• Do something to throw an exception (use Server Proxy  to send an event to CGI Base
with the PATH variable equal to "-10").

• Switch to the CGI Base  by clicking on the alert box which appears.

• Dismiss the alert box.

 At this point, no PowerPlant dialog box will let itself come to the front (check this by
selecting Logging…  in the Settings  menu), but system dialog boxes will continue to work
(check this by selecting About  in the Apple  menu). Here's an explanation and solution
(provided by John C. Daub): switching to the CGI application by clicking the alert box causes
the Mac OS to bring your application to the front but PowerPlant does not get notified. As a
result, all the PowerPlant classes believe they are still in the background and will not activate.
The remedy is to do something to let PowerPlant know that it is in the foreground and the
most convenient method of doing this is to switching to another application and then
switching back to your CGI application. This particular behavior will only arise in the debug
builds of your application and so it shouldn't be a problem in any final build.

Error Handling

Error handling is particularly important for CGI applications because often these
applications will be running unattended and their failure can completely disable the server. In
particular, you will need to avoid dialog boxes as a way to handle errors since it is unlikely
that there will be anyone to read them. This subsection will provide some guidance on how to
write error handling code that will work in this environment.

The Monsterworks' Framework treats fatal errors severely in hopes that a quick exit by the
application will result in less collateral damage. In the provided implementation, passing
true  as LogError 's second argument causes LogError  to call CCGIApp's DoQuit  method.
This will cause the CCGIApp object to exit its Run method and once this occurs, you should
call the CCGIApp's DeleteApp  method to delete  all CCGIThread s without resuming their
Run method. In order to allow the threads to return some sort of reply to the server, the
DeleteApp  method allows each thread to run the ShutDown  method (inherited from
CCGIThread ). You can override the ShutDown  method to handle any actions that must occur
and which would normally occur if Run were allowed to complete. After deleting all the
running CCGIThread s, DeleteApp  deletes the CCGIApp. After this, you can call the
CCGIFactory 's DeleteFactory  method and exit the application.

Because threads may be deleted before completing their Run method, your error handling
code needs to be carefully planned. Stack based classes (PowerPlant's St  classes and
Monsterworks' Au classes) work well in a single-thread environment but can fail in a multi-
threaded environment. The following sequence of events presents an example that could lead
to problems:

• Your thread's HandleWWWEvent method creates a stack variable that places a lock on a
database upon creation and then removes it upon destruction.

• Your thread calls Yield  either directly or indirectly.

• The thread to which you yield encounters a fatal error and calls the application's LogError
method and indicates a fatal error.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

• Your thread's ShutDown  method is called.

• The application exits.

Since control never returns to your thread's Run method, local variables are not destructed.
You can solve some of these problems by storing these stack-based variables as data members
of you thread.

ACT TWO: CGI MAILER

In this section we will put together a more complicated example of a CGI application than
CGI Base . CGI Mailer  mails data from an HTML form to users. The preference file contains
the following information:

• A "to-suffix" that limits who uses the mailer. The application will append the suffix to every
address to which the mailer sends information. For example, the suffix on the mailer I use is
"@purduenc.edu", as a result, only people with mail accounts at Purdue University North
Central can use the mailer. This measure will prevent someone from using your mailer to
relay spam.

• A "from-address" that identifies the sender of the e-mail message. You could set this to the
web master or an address indicating that the mail came from the CGI application.

• The address of the mail server that sends the mail.

The application will get the following information from the CGI variables:

• The address to which the server mails the data. The application will append the "to-suffix"
described above onto this variable. The application will look for this data in the CGI
variable associated with ECGIKey_PATH.

• The application will look for the subject of the message in the CGI variable associated with
ECGIKey_SEARCH.

• Optionally, an URL to which the application will redirect the Web browser if the mailing
was successful. The application will look for this data in the CGI variable associated with
the ECGIKey_POST. Because the data is coming from an HTML <FORM> tag, this
information will be in a name-value pair whose name is "replyPage". If no pair exists, the
application will generate a default page.

• Optionally, an URL to which the application will redirect the Web browser if the mailing
was unsuccessful. The application will look for this data in the CGI variable associated with
the ECGIKey_POST. Because the data is coming from an HTML <FORM> tag, this
information will be in a name-value pair whose name is "errorPage". If no pair exists, the
application will generate a default page.

We will need to subclass both CCGIThread  (to provide the mailer) and CCGIApp (to
provide the preferences) but we will use a TCGIFactory . Since all the CGI request handling
occurs within the CCGIMailThread , we will focus on the CCGIMailThread  code and then
discuss CCGIMailApp 's handling of user preferences.

CCGIMailThread

The CCGIMailThread  overrides the HandleWWWEvent and introduces three helper
methods. Because we are building on top of PowerPlant, we can delegate the communication



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

with the mail server to PowerPlant's Networking classes.  The code implementing
CCGIMailThread  is in CCGIMailer.cp  and the article presents some of it in Listing 3.

The ParseForm  method parses the HTML <FORM> data and identifies the values
associated with the names "replyPage" and "errorPage". ParseForm  returns these values in
the output arguments and formats all other name-value pairs into a single string suitable for
human consumption.

The SetReplyOK  method and the SetReplyERR  methods generate the reply to the server.
If the string passed into one of these methods is non-empty, it should be an URL to which the
server will redirect the browser. If the string is empty, then each of these methods will
generate a default page. The code for SetReplyOK  is in Listing 3 (the code for SetReplyERR
is identical except for the default string).

The HandleWWWEvent method gets the user preferences by using the static  CCGIAppP
pointer and a dynamic_cast  to a CCGIMailApp . The preferences are then available from the
CCGIMailApp 's accessor functions. After getting the preferences, HandleWWWEvent uses
ParseForm  to decode the <FORM> data. Then the method places the formatted name-value
pairs in a mail message and sends this message using PowerPlant's Networking Classes.
Finally, HandleWWWEvent either calls SetReplyOK  and SetReplyERR  to set the CGI reply.

Although we do not directly call Yield  in our HandleWWWEvent method, it is possible
that some PowerPlant classes call Yield  in their methods.

Listing 3: CCGIMailer.cp - Thread methods
ParseForm

string CCGIMailThread::ParseForm(
string* outReplyPageP,
string* outErrorPageP) const

{
CCGIMailThread::CheckMe();

ThrowIfNil_(outReplyPageP);
ThrowIfNil_(outErrorPageP);

string theResult;

FormPairs theFormData
= UtWWWCodec::StringToPairs(Parameter(CGIKey_POST));

for (FormPairs::iterator theIterator
= theFormData.begin();

theIterator != theFormData.end();
++theIterator)

{
if ( theIterator->first == "replyPage")
{

*outReplyPageP = theIterator->second;
}
else if ( theIterator->first == "errorPage")
{

*outErrorPageP = theIterator->second;
}
else



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

{
theResult += "==================\r\n";
theResult += theIterator->first;
theResult += ":\r\n\t";
theResult += theIterator->second;
theResult += "\r\n\r\n";

}
}
return theResult;

}

SetReplyOK
void CCGIMailThread::SetReplyOK(string* inReplyP) const
{

CCGIMailThread::CheckMe();

ThrowIfNil_(inReplyP);
if (inReplyP->empty())
{

*inReplyP = UtHTMLWriter::HTMLHeader("Your
Submission");

*inReplyP += "<P>Your submission has been mailed.";
*inReplyP += UtHTMLWriter::HTMLFooter();

}
else
{

*inReplyP = UtHTMLWriter::Redirect(*inReplyP);
}
SetReply(*inReplyP);

}

HandleWWWEvent
void* CCGIMailThread::HandleWWWEvent(void)
{

CCGIMailThread::CheckMe();

string theReply;
string theError;

try
{

const CCGIMailApp* theMailAppP
= dynamic_cast<const CCGIMailApp*>(

CCGIApp::CCGIAppP());
ThrowIfNil_(theMailAppP);

const int kStringLength (256);

//Get Mail Preferences
char theToSuffix[kStringLength];
theMailAppP->GetToSuffix(theToSuffix, kStringLength);



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

char theFromAddress[kStringLength];
theMailAppP->GetFromAddress(

theFromAddress, kStringLength);

Str255 theMailServer;
theMailAppP->GetMailServer(theMailServer);

//Fill in Message
LMailMessage theMessage;
string theToString = Parameter(CGIKey_PATH);
theToString += theToSuffix;
theMessage.SetTo(theToString.c_str());

theMessage.SetSubject(
UtWWWCodec::FromWWW(

Parameter(CGIKey_SEARCH)).c_str());

theMessage.SetFrom(theFromAddress);

string theFormData = ParseForm(&theReply, &theError);
theMessage.SetMessageBody(

theFormData.c_str(), theFormData.length());

//Send the Message
LSMTPConnection theConnection(*this);
theConnection.SendOneMessage(theMailServer,

theMessage);

SetReplyOK(&theReply);
} catch (...) {

SetReplyERR(&theError);
}
return nil;

}

This completes the discussion of CCGIMailThread . The Monsterworks' Framework hides
the interactions with the Web server and PowerPlant hides the interactions with the mail
server.

CCGIMailApp

We now turn our attention to CCGIMailApp  which subclasses CCGIApp to provide
preferences. I begin by quickly describing the non-CGI related methods: we use
FindCommandStatus , ObeyCommand, SetMailPreferences  to add a command to set the
preferences; GetToSuffix , GetFromAddress  and GetMailServer  provide access to the
preferences. The return type of the Get  methods matches the requirements of the PowerPlant's
LMailMessage  methods.  The code implementing CCGIMailApp  is in CCGIMailer.cp  and
the article presents some of it in Listing 4.

The reason for writing a subclass was to provide preferences and the constructor will load
these preferences during construction and lock them down allowing the CCGIMailApp  to
hold a pointer to them. As promised above, we explain why all the class methods bind the



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

CheckMe method at compile time. In the CCGIMailApp  constructor we call the CCGIApp
method PrefsP . If CCGIApp's call to CheckMe were bound dynamically it would resolve to
the method defined by CCGIMailApp . Since the CCGIMailApp  is not completely constructed,
this would result in an exception being thrown. We resolve this by binding the call at compile
time so that derived classes may safely call any base class method in their constructor. An
alternative strategy would have been to split each method into a protected  implementation
and a public  interface. The public  interface would call CheckMe and then the protected
implementation and the constructors of derived classes could call the protected  version. We
opted for the explicit binding for two reasons: first, it is simpler to implement and second, if
the method is a base class method, only the base class portion of the object needs to be valid to
complete the call. The chosen method allows the application to continue to maintain low-level
functionality (such as logging) during a crisis.

Listing 4: CCGIMailer.cp - Application methods
CCGIMailApp

CCGIMailApp::CCGIMailApp(void)
: myMailPrefsH(),

myMailPrefsP(nil)
{

CCGIApp::CheckMe();

const bool kIsFatal (true);

//Set up Mailing Preferences
try
{

StCurResFile theCurrentResFile();
SInt16 theRefNum

= PrefsP()->OpenResourceFork(fsRdWrPerm);

const bool kCurResOnly(true);
{

StNewResource theNewResource(PrefResType, PrefResID,
 sizeof(SCGIMailPrefs), kCurResOnly);

if (!theNewResource.ResourceExisted())
{

SCGIMailPrefs** theDefaultPrefsH
= reinterpret_cast<SCGIMailPrefs**>(

theNewResource.Get());

//the default preferences
LStr255 theString

= StringLiteral_("Monsterworks Mailer");
LString::CopyPStr(

theString, (**theDefaultPrefsH).FromAddress,
sizeof((**theDefaultPrefsH).FromAddress));

theString = StringLiteral_("@purduenc.edu");
LString::CopyPStr(

theString, (**theDefaultPrefsH).ToSuffix,
sizeof((**theDefaultPrefsH).ToSuffix));



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

theString
= StringLiteral_("centaur.cc.purduenc.edu");

LString::CopyPStr(
theString, (**theDefaultPrefsH).MailServer,
sizeof((**theDefaultPrefsH).MailServer));

}
}
const bool kThrowIfFail(true);
myMailPrefsH.GetResource(PrefResType, PrefResID,

kThrowIfFail, kCurResOnly);
::HLockHi(myMailPrefsH.Get());
myMailPrefsP

= *reinterpret_cast<SCGIMailPrefs**>(
myMailPrefsH.Get());

ValidatePtr_(myMailPrefsP);
}
catch (...)
{

LogError(
StringLiteral_("Couldn't set up mailing

preferences"),
kIsFatal);

}

//Register PowerPlant Classes
try
{

RegisterClass_(LTabGroup);
}
catch (...)
{

LogError(
StringLiteral_("Couldn't register PowerPlant

Classes"),
kIsFatal);

}

//Install myself as the Static CCGIApp
try
{

SetCCGIAppP(this);
}
catch (...)
{

LogError(
StringLiteral_("Couldn't install

CCGIMailApp as static CCGIApp"),
kIsFatal);

}
}



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

~CCGIMailApp
CCGIMailApp::~CCGIMailApp(void)
{
}

Now that we have a preference file, we need to give the user a method of accessing it. We
will do this by appending an item to the Settings  menu. We could store the name of the item
in a resource, load the resource and then add the menu item to the existing menu. Instead we
will override the Menu resource. To do this, we take the Settings  menu resource (number
131) from CGIBase.ppob  and added it to a new resource file named CCGIMailer.ppob . We
can then add a new menu item (Mailing… ) to this and give it the appropriate command
identifier. If you do this, you  must link CGIMailer.ppob  into your application before
linking CGIBase.ppob . This will happen if you place CCGIMailer.ppob  higher in the link
window than CGIBase.ppob  as shown in Figure 1. When the linker reaches CGIBase.ppob ,
it will report that it is ignoring the duplicated menu item. Make sure that it is ignoring the one
from CGIBase.ppob  and not the one from CCGIMailer.ppob .

Figure 1: Link Order for CGIMailer

The final item of interest is the CCGIMailFactory   provided with the following:
typedef TCGIFactory<CCGIMailThread, CCGIMailApp>

CCGIMailFactory;

Now users can use a CCGIMailFactory  to insure that they are using compatible subclasses
of CCGIThread s and CCGIApps.

main

The only change to the main  function from the CGI Base  project (given in Listing 2) is
that the the created CCGIFactory  is a CCGIMailFactory  instead of a CCGIEchoFactory .
This single change will allow for the creation of a CCGIMailApp  in place of the CCGIApp and
CCGIMailThread s in place of the CCGIEchoThread s.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

BEHIND THE SCENES

Now that you know how to use the framework, we present some of the code behind the
interface. In the next three subsections, we take a closer look at the implementations some of
the code in the three primary classes: CCGIThread,  CCGIApp and CCGIFactory . The
CCGIThread  is responsible for suspending the AppleEvent , processing the AppleEvent
and then resuming the AppleEvent . The CCGIApp is responsible for handling user
preferences and for dispatching the CGI AppleEvent s to a CCGIThread . The CCGIFactory
class is responsible for thread management, both the creation of threads and their orderly
destruction in the case of an error.

CCGIThread

We start with the CCGIThread  class because it is responsible for CGI handling. The code
implementing CCGIThread  is in CCGIThreadApp.cp  and the article presents some of it in
Listing 5.

The CCGIThread  constructor stores the AppleEvent  information in data members
because the AppleEvent s provided by the operating system will be invalid after we call
SuspendEvent . Since we use stack-based classes for all the dynamically allocated members of
the CCGIThread  class, we do not need to do anything in the destructor.

The framework places the work required of all CCGIThread s in the Run method and you
should  override the Run method if they need to do some processing before calling
SuspendEven t  or after calling ResumeEven t . Any override of Run must call
SuspendEvent  to permit multi-threading of AppleEvent  processing and ResumeEvent  to
send the event back to the server (see Grant 1996). We have placed the complete contents of
the Run method in a t ry  block to insure that your application is aware of any uncaught
exceptions. If you leave out this block, LThread  will catch  (and then ignore) any uncaught
exceptions so you can leave the block out if you override the Run method.

The ShutDown  method handles situations where the Run method fails to complete. The
default implementation simply returns a HTML page to the server that says the CGI
processing could not be completed. If you override the ShutDown method, try to make your
code as short and simple as possible since it is likely that something is already wrong with the
application. Before overriding the ShutDown  method, consider whether it would suffice to use
a stack-based class member in your CCGIThread  subclass.

Parameter(AEKeyword, ...)  makes an inline call to AEGetParamPtr  and so we will
focus on Parameter(ECGIKeys) . Parameter(ECGIKeys)  uses a static  buffer that is
capable of holding the largest CGI variable coming from a WebSTAR server (as determined by
the class UtCGIKey ). Although it could use an automatic variable and tailor the buffer size for
each call of Parameter(ECGIKeys) , the framework assumes that you will call the method
frequently enough that making a single request for a large chunk of data will be more efficient.
Since the buffer is static , all the threads share it and the framework only incurs a 32KB
overhead.

SetReply  is the other side of the coin and provides access to the reply AppleEvent. As
in the case of P a r a m e t e r , SetReply  comes in two versions. The first version,
SetReply(AEKeyword,...) , makes an inline call to AEPutParamPtr  and we will present
the code for SetReply(const string&) .



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

Listing 5: CCGIThreadApp.cp - Thread methods
Run

void* CCGIThread::Run(void)
{

void* theResult (nil);
try
{

CCGIThread::CheckMe();

SuspendEvent();
theResult = HandleWWWEvent();
ResumeEvent();

}
catch (...)
{

const bool kIsFatal (true);
CCGIApp::CCGIAppP()->LogError(

"Uncaught exception in CCGIThread::Run",
kIsFatal);

}
return theResult;

}

SuspendEvent
void CCGIThread::SuspendEvent(void)
{

CCGIThread::CheckMe();

ThrowIfOSErr_(::AESuspendTheCurrentEvent(&myEvent));
CCGIApp::CCGIAppP()->EventStarted();

}

ResumeEvent
void CCGIThread::ResumeEvent(void)
{

CCGIThread::CheckMe();

CCGIApp::CCGIAppP()->EventFinished();
ThrowIfOSErr_(::AEResumeTheCurrentEvent(

&myEvent, &myReply,
static_cast<AEEventHandlerUPP>(kAENoDispatch), 0));

}

ShutDown
string CCGIThread::ourShutDownMessage

= UtHTMLWriter::HTMLHeader("Oops")
+ "<P>This service has unexpectedly needed to shut down.<BR><BR>"
+ "\r\nSorry\r\n" + UtHTMLWriter::HTMLFooter());

void CCGIThread::ShutDown(void)
{

CCGIThread::CheckMe();



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

SetReply(ourShutDownMessage);
ResumeEvent();

}

Parameter
string CCGIThread::Parameter(ECGIKeys inKey) const
{

CCGIThread::CheckMe();

Size theRealSize (0);
DescType theRealType (typeNull);
Size theMaxSize (UtCGIKey::MaxSize(inKey));

//the + 1 is to handle the terminating \0 if needed
static char* ourBuffer

= NEW char[UtCGIKey::MaxSize(CGIKey_MAX_DATA) + 1]);

ThrowIfOSErr_(Parameter(inKey, typeChar,
&theRealType, ourBuffer, theMaxSize, &theRealSize));

if (theMaxSize < theRealSize)
{

theRealSize = theMaxSize;
LStr255 theError

= StringLiteral_("Parameter Overflow: ");
theError.Append(&inKey, 4);
CCGIApp::CCGIAppP()->LogError(theError);

}
ourBuffer[theRealSize] = '\0';

return string(ourBuffer);
}

SetReply
void CCGIThread::SetReply(const string& inReply)
{

CCGIThread::CheckMe();

ThrowIfOSErr_(SetReply(keyDirectObject, typeChar,
inReply.c_str(), inReply.length()));

}

CCGIApp

 Most of the methods in CCGIApp do not directly relate to CGI event handling, if you wish
to learn about them, consult the PowerPlant references and Monsterworks' API.  The code
implementing CCGIApp is in CCGIThreadApp.cp  and the article presents some of it in
Listing 6.

We begin with the DeleteApp  method. This method is necessary because the destructor is
protected . The DeleteApp  method first delete s any CCGIThread s using CCGIFactory 's
TerminateThreads  method. DeleteApp  finishes by deleting the static  pointer



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

ourCCGIAppP . Because control of the CPU cannot return to a delete d thread, you should
not call DeleteApp  from within a CCGIThread .

CCGIApp installs WWWHandler as the CGI AppleEvent handler in its constructor. Its code
below is short, the method uses the static  pointer CCGIAppP to pass its arguments to the
virtual  method HandleWWWEvent. HandleWWWEvent uses the CCGIFactory  to create a
CCGIThread  and then starts the thread running.

 Listing 6: CCGIThreadApp.cp - Application methods
DeleteApp

void CCGIApp::DeleteApp(void)
{

CCGIApp::CheckMe();

//delete all CCGIThreads
CCGIFactory::CCGIFactoryP()->TerminateThreads();

//delete ourselves
DisposeOf_(ourCCGIAppP);

}

CheckMe
void CCGIApp::CheckMe(void)
{

ValidateThis_();

ValidateObject_(myWindowP);
ValidateObject_(myLastHitPaneP);
ValidateObject_(myTotalHitsPaneP);
ValidateObject_(myFinishedHitsPaneP);
ValidateObject_(myLogFilePaneP);

ValidateHandle_(myLogPrefsH.Get());
AssertHandleLocked_(myLogPrefsH.Get());
ValidatePtr_(myLogPrefsP);

ValidateObject_(ourCCGIAppP);
}

CheckUs
void CCGIApp::CheckUs(void)
{

ValidateObject_(ourCCGIAppP);
}

WWWHandler
pascal OSErr CCGIApp::WWWHandler(

const AppleEvent* inEventP,
AppleEvent* outReplyP,
long inRefCon)

{
OSErr theResult(noErr);



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

try
{

CCGIApp::CheckUs();
theResult = CCGIAppP()->HandleWWWEvent(

inEventP, outReplyP, inRefCon);
}
catch (...)
{

theResult = errAEEventNotHandled;
}
return theResult;

}

HandleWWWEvent
OSErr CCGIApp::HandleWWWEvent(

const AppleEvent* inEventP,
AppleEvent* outReplyP,
long inRefCon)

{
CCGIApp::CheckMe();

OSErr theResult(noErr);

ThrowIfNil_(inEventP);
ThrowIfNil_(outReplyP);

CCGIThread* theCGIThreadP
= CCGIFactory::CCGIFactoryP()->CreateThread(

*inEventP, *outReplyP, inRefCon);

ThrowIfNil_(theCGIThreadP);
theCGIThreadP->CheckMe();
theCGIThreadP->Resume();

return theResult;
}

CCGIFactory

While the CCGIFactory  class has the least amount of code attached to it, it is probably the
most difficult of the three classes to design. The code implementing CCGIFactory  is in
CCGIThreadApp.cp  and the article presents some of it in Listing 7.

The TerminateThreads  method will terminate all the CCGIThread s that are currently
running. Since you should be able to call it from anywhere (even within a CCGIThread ), the
method spawns a new thread to handle the terminations. Be aware that if you do call it from
within a CCGIThread , control will not return to the calling point after the method completes.

The CCGITerminator 's Run method carries out the deletions. It first creates a
StCri t ical  object to prevent any other thread from taking control and then calls
UtThread 's DoForEach(UtThreadBoolIterator, void*)  m e t h o d .  A



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

UtThreadBoolIterator  is a function which takes an LThread  and a void*  and returns a
bool . CCGITerminator 's TerminateThread  method is such a method and is described
later in this section. UtThread 's DoForEach  method is a slight variation of LThread 's
DoForEach  method. Both will iterate through all the threads known to PowerPlant and apply
their first argument to each of the threads. Unfortunately, LThread 's method does not allow
the passed in function to delete threads and UtThread  overcomes this. The return value of the
UtThreadBoolIterator  argument determines whether the thread is still valid with a
false  value indicating the function deleted the thread.

Finally, we look at TerminateThread . This method first uses a dynamic_cast  to
determine if the thread is a CCGIThread . If it is, then TerminateThread  calls the
CCGIThread 's ShutDown  method and deletes the thread.

Listing 7: CCGIThreadApp.cp - Factory methods
TerminateThreads

void CCGIFactory::TerminateThreads(void)
{

CCGIFactory::CheckMe();

if (myTerminatorP == nil)
{

CreateTerminator();
}

ThrowIfNil_(myTerminatorP);
myTerminatorP->Resume();

}

Run
void* CCGIFactory::CCGITerminator::Run(void)
{

StCritical noYielding();
UtThread::DoForEach(TerminateThread, nil);
return nil;

}

TerminateThread
bool CCGIFactory::CCGITerminator::TerminateThread(LThread&
inThread, void*)
{

bool theResult = true;
try
{

CCGIThread& theCGIThread
= dynamic_cast<CCGIThread&>(inThread);

theCGIThread.ShutDown();
theCGIThread.DeleteThread();
theResult = false;

}
catch (bad_cast& theException)
{

//it wasn't a CCGIThread



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

}
catch (...)
{

//keep going
}

return theResult;
}

Thread management is a confusing subject and the following example may help describe
the above strategy. Diagram 2 provides a general road-map of the example (time flows from
the top to the bottom of the diagram). There are four threads: Thread 0x64 is the
UMainThread , usually associated with the CCGIApp object. PowerPlant uses Thread 0x65
internally and we will ignore it here. Thread 0x66 is the CCGITerminator  thread usually
associated with the CCGITerminator  object; and Threads 0x67 and 0x68 are both
CCGIThread s handling AppleEvent s from the Web server. The diagram indicates the times
the threads are valid by solid lines and the times the threads are executing by rectangles. The
numbered black dots indicate the break-points described in Listing 8.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

Figure 2: Some Threading

The example will probably make more sense if you follow it in the debugger with CGI
Base (and one of the debug builds). You will want to set break points on the lines in
CCGIThreadApp.cp  indicated by Listing 8.

Listing 8 CCGIThreadApp.cp
Break-point locations

 361CCGIFactory::CCGIFactoryP()->TerminateThreads();
 364DisposeOf_(ourCCGIAppP);
 758Yield(LThread::GetMainThread());
 910theCGIThreadP->Resume();
1017theResult = HandleWWWEvent();
1170SetReply(ourShutDownMessage);
1447UtThread::DoForEach(TerminateThread, nil);

Enable the debugger and run CGI Base . Then send the 10 minute wait to CGI Base  from
Server Proxy  (either type 600 in the PATH pane or use the document CGI Base - 10
min wait ). You should jump back to the debugger at line 910 in Thread 0x64 (the debugger
displays thread numbers in the window title). This is the end of block A where we are about to
start the CCGIEchoThread  running with a call to Resume. Click the Run  button and you
should end up at line 1017 in Thread 0x67. This is the center of block B and the
CCGIEchoThread  now has control of the CPU and is executing its Run method. Hit the Run
button and both of the debugger windows (0x64 and 0x67) will indicate that the application is
running. What has happened is that control returned to the main thread (0x64) at the Sleep
statement in CCGIEchoThread 's HandleWWWEvent method. The event loop has resumed and
this is block C.

Now go back to Server Proxy  and send in a fatal error (either type -10 in the PATH pane
or use the document CGI Base - fatal error ). You should jump back to the debugger at
line 910 in Thread 0x64 again where the application is preparing to Resume the second
CCGIEchoThread . You are now at the end of block C. Push the Run  button and you will stop
at line 1017 in Thread 0x68 (in block D) (just like the first thread stopped). Click the Run
button and the break-point at line 758 in Thread 0x68 will stop the debugger. This is at the end
of block D inside CCGIApp's LogError  method. The call to Yield  will return you to the main
thread where the CCGIApp will exit its Run method.

The next break-point is at line 361 in Thread 0x64 (end of block E). The CCGIApp has exited
its Run method and DeleteApp  is now executing. Push the Run  method and you will go to
line 1447 in Thread 0x66 where the CCGITerminator  thread is now preparing to eliminate
any remaining CCGIEchoThread s. Push the Run  button. If you have set up your debugger to
Break on C++ Exceptions  there will be three failed dynamic_cast s here (Threads 0x64,
0x65 and 0x66 are not CCGIEchoThread s) and you will need to push the Run  button after
each of them. The next break-point is at line 1170 in Thread 0x66 (middle of block F). This is a
CCGIThread 's ShutDown  method and you can determine which CCGIThread  by examining
the mThread  data member of the this object in the debugger. The debugger shows this data
member in decimal (not hexadecimal like the window titles) so it will display 103 = 0x67 and
you are in the ShutDown  method of the first CCGIEchoThread . Push the Run  button and you



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

will break at the same line (line 1170 in Thread 0x66, end of block F) but this time you will see
that you are calling the ShutDown  method of the second CCGIEchoThread .

This time when you push the Run  button something interesting will happen. If you have
not closed any of the thread windows, all threads will appear to be at line 364 (top of block G).
What has happened is that Threads 0x66, 0x67 and 0x68 are no longer valid but the debugger
hasn't noticed this. This behavior will happen anytime you have windows open for threads
that have been deleted (either by calling DeleteThread  directly or by completing their Run
method). You can manipulate the application from any of these windows, except that the
window title is incorrect. In this case, only Thread 0x64 is still running and so you can close all
the other windows and push the Run  button. The application will then finish off the main
function and terminate.

If you opt to override the error handling in the Monsterworks' Framework, it is probably a
good idea to sketch out the expected flow of control and then check it by placing break-points
at key locations. It is very easy to place crucial error handling code at a location where it
cannot be reached. For instance, if you call DeleteApp  from a CCGIThread , then the call to
TerminateThreads  would execute correctly, but you would never return to call the
DisposeOf_(ourCCGIApp) . You can find this type of error by using a diagram like Diagram
2 or by walking through the code.

CURTAIN CALL

That wraps up the introduction to the Monsterworks' Framework for CGI applications. At
this point, you may want to use some of the other sources provided in the References section
or just start experimenting on your own. A good way to get started is to try to port existing C
or C++ CGI code to the framework. Once you become comfortable, you will find that writing
CGI applications is very similar to writing ordinary applications except for the I/O handling.

While the framework probably still contains some undocumented features (pessimists use
the term "bugs"), I currently use it for a variety of tasks and it has been very stable. If you find
an undocumented feature or discover that the basic classes lack some functionality that you
cannot provide through inheritance, send me an e-mail and I will do what I can to correct the
situation.

REFERENCES

The following references provide coverage of some of the topics discussed above. Within
each category, I have listed them in a suggested reading order and have provided some
commentary on the contents of each.

CGI Programming, articles

 If you have the MacTech CD-ROM, then you probably already have easy access to the
articles listed.

O'Fallon, John, "Writing CGI Applications in C", MacTech Magazine, 11:9 (September 1995)
provides an introduction to CGI programming. It covers many of the basic issues of CGI
handling that I glossed over.

Neufeld, Grant, "Threading Apple Events", MacTech Magazine, 12:4 (April 1996) describes
the code needed to thread AppleEvents. The Monsterworks' Framework and PowerPlant



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

provide much of the coding that the article describes, but the example he presents is a CGI
application and so it provides another CGI example. The author of this article has written
Grant's CGI Framework that provides a threaded framework in C. The most recent version I
have found is at <http://www.nisto.com/cgi/framework>.

Urquhart, Ken, "High Performance ACGIs in C", develop, 29 (March 1997) presents an
application shell for handling threaded CGI applications.

Halfmann, Klaus, "Writing ACGIs with MacApp", MacTech Magazine, 14:3 (March 1998)
presents a shell for writing ACGI applications using MacApp (not surprising given the title). If
you use MacApp instead of PowerPlant, this might be a good introduction.

Various articles, MacTech Magazine, 11:5–12:1 (May 1995–January 1996) provides articles
about Web servers and CGI applications in a variety of programming and scripting languages.
In particular, the article by Jon Wiederspan entitled "CGI Applications and WebSTAR" (July
1995) describes the interaction between Web servers and CGI applications.

CGI Programming, online

"Quid Pro Quo" is a free HTTP server that you can download at
<http://www.socialeng.com>. It provides some examples of CGI programming in both C and
AppleScript.

"WebSTAR Documentation" (version 3) from StarNine is available at
<http://www.starnine.com> and contains information describing how to manage a WebSTAR
server. The information about CGI applications is in Appendix C: "Extending WebSTAR:
CGI's, Plug-Ins and Java". The company also provides an online tutorial at their site that
provides more information about CGI development for WebSTAR servers.

CGI Programming, books

John December and Mark Ginsburg, "HTML 3.2 & CGI Unleashed" (1996) is where I
learned much of my HTML and CGI. The problem is that the book is big (1300 pages). If you
are looking for a very complete reference book, I would look into a newer version of this book.
If you are looking for a gentle introduction to Web design, this book is probably a little too
heavy (literally and figuratively).

PowerPlant

Metrowerks Corporation, PowerPlant Book (1998) covers basic PowerPlant programming.

Metrowerks Corporation, PowerPlant Advanced Topics (1999) covers the threading and
networking classes provided by PowerPlant.

C++

Musser, David R. and Saini, Atul, "STL Tutorial and Reference Guide" (1996) is probably a
little out of date (I don't know enough to be positive), but it does provide a good introduction
to the ideas behind the container classes in the standard C++ library.

Stroustrup, Bjarne, "The C++ Programming Language" (1997) is not a good starting place
for beginners, but it does provide a useful reference for the language, including the container
classes in the standard C++ library.



MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation.  All rights reserved.

Gamma, Helm, Johnson and Vlissides, "Design Patterns" (1995) provides some design
patterns that are present in the PowerPlant and Monsterworks' Frameworks.




