
MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

POWERPLANT WORKSHOP
By Aaron Montgomery

Basic Windows
How one goes about writing a PowerPlant application

About the author...

Aaron teaches in the Mathematics Department at Central Washington University in
Ellensburg, WA. Outside of his job, he spends time riding his mountain bike, watching movies
and entertaining his wife and two sons. You can email him at montgoaa@cwu.edu, try to
catch his attention in the newsgroup comp.sys.mac.oop.powerplant or visit his web site
at mac69108.math.cwu.edu:8080/.

THESE ARTICLES

This is the third article in a series of articles about Metrowerks’ PowerPlant application
framework. The first article introduced how the framework deals with commands and the
second article discussed the debugging facilities of the framework. This article focuses on the
window classes in the framework. This series assumes familiarity with the C++ language, the
Macintosh Toolbox API and the CodeWarrior IDE. The articles were written using
CodeWarrior 6 with the net-update to IDE 4.1.0.3 and no other modifications. Throughout this
and future articles, I will assume that you are using the class browser and the debugger to
explore the PowerPlant code more fully.

PANES, VIEWS AND WINDOWS (OH MY)

Windows provide your users the ability to view their data and so they will be a
fundamental part of your user interface. PowerPlant helps you in providing this visual
interface through its LPane, LView and LWindow classes. An LPane is something that is
drawn on the screen. An LView is an LPane that may contain other LPanes (which allows
you to design a visual hierarchy). An LWindow is usually the topmost LView in a visual
hierarchy and it is derived from both LView and LCommander. The PowerPlant Book spends
multiple chapters on these classes so you can (correctly) assume that I will leave a lot unsaid.
The purpose of this article is to introduce you to Constructor and some of the basic code
needed to work with the visual hierarchy in PowerPlant.

CONSTRUCTING WINDOWS

My general pattern of development is to first set up the visual hierarchy in Constructor and
then write the code to support that hierarchy. This ordering is not required and I frequently go
back and forth between Constructor and the CodeWarrior IDE. For the sake of keeping the
article short, we will inspect the AppResources.ppob file first and the source code second.
The application uses three windows: a document window for text editing, a dialog that
requests information from the user and a floating window for displaying information to the
user. We will examine the document window first.

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

Double-clicking the AppResources.ppob in the project window should launch
Constructor. You can do this resource editing in Resourcerer (using templates provided) or in
ResEdit (if you are really got at hex), but I have always found Constructor more convenient.
The discussion here is limited (remember, this is an introduction to PowerPlant, not a
reference) but you can find more information in the Constructor User Guide on the
CodeWarrior CD. Double-click the “Document Window” resource (you may need to expand
the Windows & Views group to see it) and select Show Object Hierarchy from the
Layout menu. A document window has three nested views: an LWindow object containing an
LScrollerView object containing an LTextEditView object (well, not quite, but we will get
to that in a moment). Open a Property Inspector window (from the Windows menu)
and select the LWindow from the Hierarchy window. Most of the properties should be
familiar to you if you have worked with Macintosh window. You can learn about many of the
ones that aren’t familiar by adjusting them and then running the application. The first
property is the Class ID that is used by PowerPlant to determine exactly what sits in each
resource, we will explain it later, but for now you will want to leave it untouched.

Inside the LWindow is an LScrollerView that handles the scrollbars for the window.
Click on it in the Hierarchy window and look at its properties. LScrollerView is derived
from LPane and the first set of values is used by the LPane base class. The Pane ID is
necessary if you need to have access to this pane from your source code, since I don't access
the scrollbars from the source code I'll leave it set to 0. Just like the LWindow resource, don't
change the Class ID number. The LScrollerView is 2 pixels higher and wider than the
enclosing window (and placed one so that it extends 1 pixel beyond each edge). I can never
remember the appropriate values for the Height and Width properties so I usually dig around
in the PowerPlant stationary or PowerPlant examples and examine the values there. This
LScrollerView is bound to all four sides (so it will expand in all directions if the window
expands). The second set of properties is specific to the LScrollerView class. The first is the
thickness of the scrollbars as well as their positioning. Again, I don't typically remember these
off the top of my head and so I end up looking in stationary and example files. By setting the
horizontal scrollbar’s Left and Right properties to -1 we cause it to be absent. The vertical bar is
set to 0 from the top and 15 from the bottom (more values gleamed from other sample
resources). The Scrolling View ID is the Pane ID of the pane that the scrollbars will control (in
this case, it is the LTextEditView). I have activated Live Scrolling.

Inside the LScrollerView is something based on an LTextEditView. If you look at an
untouched LTextEditView, the Class ID is txtv, but this has a Class ID of Htxv. We are not
going to be using a LTextEditView in our application, but rather a subclass called
CHTMLTextView . Since the subclass doesn’t need any more data than what is in a
LTextEditView resource, the easiest way to create a resource for a CHTMLTextView is to use
the LTextEditView template and then change the Class ID. The effects of this change will be
discussed below when we talk about the source code. I've discussed the LPane properties in
the last paragraph. Since I will try to access this pane from the source code, I needed to give it
an “honest” Pane ID and I choose Text since this is the text view. The choice to give the
LTextEditView a 2 pixel edge is again based on looking at various samples. The LView
properties are left untouched (and are explained in The PowerPlant Book).

The LTextEditView properties contain TextEdit flags that affect the Macintosh
TextEdit structure. I have set Word Wrap on (since I have eliminated the horizontal
scrollbar, this is important). The TextTraits is a resource ID and checking the appropriate

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

resource in Constructor shows that these traits set the font size to 12 and the font to Monaco
(since it is mono-spaced). The TEXT resource ID is the location of the original text in the
window (the TEXT resource is in the file AppResource.rsrc since I use Resourcerer to edit
it). In some later article, I might talk about how to create templates so that you can add data to
be edited in Constructor for your classes.

Before looking at the other two windows, a natural question might arise: where did these I
get these classes to put into the hierarchy? You can create a new window resource by dragging
an item from the Windows tab of the Catalog window (choose Catalog from the Window
menu) into your resource file’s window. Then you open the window you just created and
build the hierarchy within this resource by dragging items from the Catalog Window into
the resource’s window. You should probably spend some time just browsing your options.
One thing to notice is that some visual features appear more than once. In the Views tab, you
will find an LScroller, an LActiveScroller and an LScrollerView. The first two pre-
date appearance classes but I cannot seem to find any PowerPlant documentation that helps
you make this determination. If you add these to your window and then try to register them in
your source code (a step described below), you will be required to add files to your project.
This is an indication that a newer class is available. Other examples are the LRadioGroup in
the Other tab (replaced by the LRadioGroupView in the Views tab) and LEditField in
the Panes tab (replaced by LEditText in the Appearance tab). The easiest way to
determine what to use is to dig around in the sample ppob files provided by Metrowerks.

The next window, Glossary Window, is a floating window. The actual steps in constructing
it are not very different from the steps required in the previous example. The only things I will
point out are that the LTextEditView is set to be neither Selectable nor Editable.

The final window is a dialog box. This is created by dragging an LGADialog from the
Catalog window to your resource file’s window. You can then create the visual hierarchy in
the same manner as for regular windows. You will need to set the Default Button ID and the
Cancel Button ID. This will allow your dialog to correctly handle user requests from the
keyboard. When you actually create those buttons, you will set their messages to msg_OK and
msg_Cancel and check “Is Default Button” for the OK button as well. We will discuss the
messaging mechanism in PowerPlant in more depth in the fifth article, if you cannot wait, look
in The PowerPlant Book.

The only other changes are the removal of the Bad Things menu, the addition of two
commands to the Edit menu and the addition of an Insert and a Glossary menu. You
should be able to determine how these were created and what they do from the first and
second articles so I will move on to discussing the changes to the source code.

Checking that the class hierarchy has been constructed correctly can be done using the
Visual Hierarchy menu item in the Debug menu. This will present a floating window
displaying all of the hierarchies of the front-most regular application windows. You can even
identify panes by moving the mouse over them and watching the pane information turn green
in the Visual Hierarchy window.

CHANGES TO EARLIER CLASSES

Just as PowerPlant has two implementation files for the UDebugging.h header, there are
three implementation files for the UDesktop.h header. The basic implementation is

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

UDesktop.cp, UFloatingDesktop.cp should be used if you use floating windows. Finally,
UWMgr20Desktop.cp should be used if you know that the code will be run using version 2.0
of the Window Manager. This project uses UFloatingDesktop.cp because it does contain
floating windows, but does not require any of the UWMgr20Desktop.cp implementations.

There are no code changes in the main() function so we turn our attention to the
CDocumentApp class. We remove all the Bad Things code from the previous article and add
the Lookup command (which is always enabled).

This moves us to the CTextDocument class. Although very little of the code is new, we
will explain some of the existing lines of code for the first time. We start with this classes
constructor:

CTextDocument.cp
CTextDocument::CTextDocument(

LCommander* inSuper)
: LSingleDoc(inSuper)

{
mWindow = LWindow::CreateWindow(PPob_TextWindow, this);
ValidateObject_(mWindow);

myTextView =
FindPaneByID_(mWindow, kTextView, CHTMLTextView);

ValidateObject_(myTextView);
mWindow->SetLatentSub(myTextView);

NameNewDoc();

mWindow->Show();
}

The LSingleDoc class (CTextDocument’s superclass) has an LWindow* member data
named mWindow. We use this store a pointer to the document’s window. The call to
CreateWindow() takes a resource id as well as a commander. In the first article, you learned
that the commander will be the window’s supercommander. Here we discuss how PowerPlant
builds the LWindow from the resource. The actual conversion from resource data to class
object is done by the PowerPlant classes called UReanimator and URegistrar. PowerPlant
opens the resource as an LStream. Then PowerPlant reads the first four characters of the
resource and looks these up in a static table that associates four-character codes to class
constructors taking an LStream as input. If the four-character code is found, then the
associated constructor is used to create the object. If the four-character code is not found, an
exception is thrown. You can witness such an event if you replace the Class ID of the
CHTMLTextView object in the Document Window with HTXT and then run the application.
The natural question now is how PowerPlant knows which constructors are associated with
which Class IDs. The static table used is generated by calls to the macro RegisterClass_().
This will associate the class’s class_ID four-character code with the class’s stream
constructor. You will need to make sure all of your PowerPlant resources are properly
registered before you attempt to read them in from the file. You can use the Validate
PPob… and Validate All PPobs menu items from the Debug menu to verify that you have
made all of the necessary registrations.

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

Once we have a pointer to the window, a natural thing to do will be to try to access the
things in the window. In this particular instance, we will want to establish the text view as the
latent subcommander for the window (meaning that when the window is placed on-duty, the
text view takes control). You can access the subpanes of a window using the
FindPaneByID_() macro. This macro takes the window, the Pane ID and the type of that
pane as its input. If you access a pane with this macro, you will need to make sure that the
pane has a unique Pane ID. The FindPaneByID_() will attempt to find the subpane using
the given information and cast it to the appropriate type (throwing an exception if either of
these operations fail). Now that we have a pointer to the appropriate commander, we can
establish it as the latent subcommander.

CHTMLTEXTVIEW

The CHTMLTextView class derives from the LTextEditView class and adds some
features appropriate for editing HTML code. We examine some of the class declaration first.

CHTMLTextView.h
class CHTMLTextView
: public PowerPlant::LTextEditView
{
public:

enum { class_ID = FOUR_CHAR_CODE('Htxv') };

CHTMLTextView();
CHTMLTextView(PowerPlant::LStream* inStream);

//remainder omitted
};

The first thing to notice is that the class defines class_ID to be Htxt so that the
RegisterClass_() macro will work correctly. You should choose class_IDs that contain
some uppercase letters (because PowerPlant reserves those which are all lowercase).

Before presenting the code, I’ll explain what CHTMLTextView does that a regular
LTextEditView does not do. A CHTMLTextView knows how to insert a few of the HTML
tags into the document, when it does this insertion, it places a marker (the character •) in
places which should be filled out by the user. The user can then use the Goto Next Marker
and Goto Previous Marker items in the Edit menu to jump from their current location to
the next (or previous) marker. (If you use Alpha as a text editor, then this behavior probably
looks familiar). The CHTMLTextView is also capable of inserting appropriate HTML tag
templates (using the marker for items to be supplied by the user). Some of the code allowing
CHTMLTextView to handle these requests is below.

InsertTag() in CHTMLTextView.cp

void CHTMLTextView::InsertTag(const std::string& inOpen,
const std::string& inClose)

{
TEHandle theTextEditH = GetMacTEH();

StHandleLocker
theLock(reinterpret_cast<char**>(theTextEditH));

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

short theStart = (**theTextEditH).selStart;
short theEnd = (**theTextEditH).selEnd;

if (theStart == theEnd)
{

string theMarker = "";;
theMarker += Marker();
Insert(theMarker.c_str(), theMarker.length());
theEnd = theStart + 1;

}

SetSelectionRange(theEnd, theEnd);
Insert(inClose.c_str(), inClose.length());
SetSelectionRange(theStart, theStart);
Insert(inOpen.c_str(), inOpen.length());
SetSelectionRange(theStart, theStart);

}
We obtain the TEHandle directly with a call to GetMacTEH() and then use a

StHandleLocker to lock the handle until the StHandleLocker’s destructor is called.
Although it is unlikely that the lock is currently needed and so the lock is unnecessary, that
might make the code fragile if the PowerPlant code changed. Furthermore, because the lock is
controlled by an object on the stack, I feel confident that the lock will be released. We obtain
the starting and ending of the selection directly from the TEHandle. If no item is selected, we
insert a marker into the text and make it the current selection. Then we insert the tag close and
tag open and place the cursor at the start of the tag. The code needed to go to the next marker
has a similar flavor.

GotoNextMarker() in CHTMLTextView.cp
void CHTMLTextView::GotoNextMarker()
{

TEHandle theTextEditH = GetMacTEH();

StHandleLocker
theLock1(reinterpret_cast<char**>(theTextEditH));

short theEnd = (**theTextEditH).selEnd;
short theLength = (**theTextEditH).teLength;
Handle theTextH = (**theTextEditH).hText;

StHandleLocker theLock2(theTextH);

for (short thePosition = theEnd;
thePosition != theEnd - 1;
++thePosition)

{
if (thePosition > theLength)
{

thePosition = 0;
}
if (*((*theTextH) + thePosition) == Marker())
{

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

SetSelectionRange(thePosition, thePosition + 1);
return;

}
}

}
Both of these panes use PowerPlant’s code to handle drawing and user inter-action. If you

need to override these (and other) routines, you need to be aware of how PowerPlant factors
the work. There is both a Draw() and a DrawSelf() method, similarly, there is both a
Click() and a ClickSelf() method. You should override the DrawSelf() method and
call Draw() method in your source. The Draw() method will do the necessary set up, then
call the DrawSelf() method and then do the necessary tear down.

CGLOSSARY

The CGlossary class provides a first glimpse into how dialogs are handled in PowerPlant
(they will be discussed more in depth in the fifth article). The first thing to notice is that
CGlossary’s constructor is private and unimplemented. This is because the class currently
has no data and only static methods. The class could have been implemented as a namespace
at this point, but it has been written as a class to allow for the possibility of future
improvements (for example, storing the glossary data in an associative array in RAM). The
class only has two methods: RegisterClasses() and Lookup(). RegisterClasses()
does the usual task of registering those visual classes which are used by the CGlossary class
and is not presented here. The Lookup() method is overloaded with two implementations.
The first takes no arguments, presents the user with a dialog asking the tag to look up, and
then invokes the second version. The second version takes a string argument and presents the
user with the tag’s glossary information (if it exists). Their code is presented below.

Lookup() from CGlossary.cp
void CGlossary::Lookup()
{

unsigned char theString[256];
theString[0] = '\0';

StDialogHandler theHandler(k_PPob_GlossaryDialog,
LCommander::GetTopCommander());

LWindow* theDialog = theHandler.GetDialog();

LEditText* theField
= FindPaneByID_(theDialog,

k_PaneIDT_Lookup, LEditText);

theField->SetDescriptor(StringLiteral_(""));
theField->SelectAll();
theDialog->SetLatentSub(theField);
theDialog->Show();

while (true)
{

MessageT hitMessage = theHandler.DoDialog();

if (hitMessage == msg_Cancel)
{

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

return;
}
else if (hitMessage == msg_OK)
{

theField->GetDescriptor(theString);
break;

}
}

Lookup(theString);
}

We use a StDialogHandler to manage the dialog that obtains user input (more on this in
the fifth article). We pass in the resource ID of the appropriate dialog and obtain the dialog
window from the Handler. We use FindPaneByID_() to find the LEditText in that
window and present the window to the user. We then enter a loop calling the DoDialog()
method of theHandler repeatedly. This will return information about what items were hit in
the dialog. If the Cancel button was hit, we simply leave the function. If the OK button was
hit, we obtain the user’s input using the GetDescriptor() method of the LEditText and
break from the loop. The handler ignores any other action by the user. Once the dialog has
been dismissed we call the other Lookup() method (because the OK button was hit).

Lookup() in CGlossary.cp
void CGlossary::Lookup(Str255 inTerm)
{

StResource theDefinition;

try
{

theDefinition.GetResource(k_ResType_TEXT, inTerm,
true, true);

}
catch (...)
{

theDefinition.GetResource(k_ResType_TEXT,
k_Str255_Unknown, true, true);

}

LWindow* theWindowP
= LWindow::CreateWindow(k_PPob_GlossaryWindow,

LCommander::GetTopCommander());
LTextEditView* theDefnP

= FindPaneByID_(theWindowP, k_PaneIDT_Definition,
LTextEditView);

theDefnP->SetTextHandle(theDefinition);

LStaticText* theTermP
= FindPaneByID_(theWindowP, k_PaneIDT_Term,

LStaticText);
LStr255 theString = StringLiteral_("<");
theString += inTerm;
theString += StringLiteral_(">");
theTermP->SetDescriptor(theString);

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

}
The second version of Lookup() is responsible for actually determining and displaying

information about the tag. The information is stored as resources of type TEXT with the name
of the tag used as the name of the resource. We obtain the resource using a StResource that
will dispose of the resource when its destructor is called. We first try to obtain a resource with
the tag’s name and if that fails, we use a generic error message stored in a resource with the
name “Unknown”. The first true in the GetResource() call tells the method to Throw_ if
there is an error and the second true tells the method to only look in the current resource file.

Once we have the text we create a window, use some FindPaneByID_()’s to obtain
pointers to some text fields and fill them in. We use the LStr255 class from PowerPlant for
the second field. This class is described in a MacTech article written by John C. Daub and
provides a lot of the functionality normally found in the C++ string class for Pascal style
strings (of length up to 255). The StringLiteral_ macro converts its input into Pascal style
strings. Currently it is very simple, but using the macro will make it easier to adjust if the
PowerPlant API changes to C style strings at some future point.

CONCLUDING REMARKS

Well, that provides a user interface to your application. Although it was quick and sketchy,
it should give you some feel for how PowerPlant handles windows. We explore how
PowerPlant works with files in the next article (which is the other half of PowerPlant’s
LDocument class). The core portion of this series will be completed in the fifth article where
we cover how PowerPlant handles dialogs. Once the core portion is completed, I am open for
suggestions on where to go next, so if you have any ideas, please e-mail me.

POWERPLANT REFERENCES

References that are particularly appropriate for this article are the following:
“Panes”, “Views”, “Windows” chapters in The PowerPlant Book
John C. Daub’s “The Ultra-Groovy LString Class” in MacTech, January 1999

