
MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

POWERPLANT WORKSHOP
By Aaron Montgomery

Basic Files
How one goes about writing a PowerPlant application

About the author...

Aaron teaches in the Mathematics Department at Central Washington University in
Ellensburg, WA. Outside of his job, he spends time riding his mountain bike, watching movies
and entertaining his wife and two sons. You can email him at montgoaa@cwu.edu, try to
catch his attention in the newsgroup comp.sys.mac.oop.powerplant or visit his web site
at mac69108.math.cwu.edu:8080/.

THESE ARTICLES

This is the fourth article in a series of articles about Metrowerks’ PowerPlant application
framework. The first article introduced how the framework deals with commands, the second
article discussed the debugging facilities of the framework and the third introduced windows.
This article focuses on the file classes in the framework (opening and saving files). This series
assumes familiarity with the C++ language, the Macintosh Toolbox API and the CodeWarrior
IDE. The articles were written using CodeWarrior 6 with the net-update to IDE 4.1.0.3 and no
other modifications. Throughout this and future articles, I will assume that you are using the
class browser and the debugger to explore the PowerPlant code more fully.

SETTING UP NAVIGATION SERVICES

Before you can use Navigation Services, you need to do some setup. The first step is to
modify the common prefix file to let PowerPlant know whether you want to always use the
classic file dialogs, require Navigation Services, or use Navigation Services if it is available and
the classic dialogs otherwise. This is done in the project’s prefix file.

CommonPrefix.h
#if PP_Target_Carbon

#define PP_StdDialogs_Option \
PP_StdDialogs_NavServicesOnly

#define SetTryNavServices_ do { } while (false)
#else

#define PP_StdDialogs_Option \
PP_StdDialogs_Conditional

#define SetTryNavServices_ \
PowerPlant::UConditionalDialogs::SetTryNavServices(\

0x01108000)
#endif

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

For Carbon targets, the code sets the dialogs to be Navigation Services at all times and the
SetTryNavServices_ macro does nothing. For the other targets, the code uses conditional
dialogs. The conditional dialogs option will use Navigation Services if it is available and
classic dialogs otherwise. The SetTryNavServices_ macro tells PowerPlant to use
Navigation services only if it has version at least 1.1 (PowerPlant stationery explains that
earlier versions can cause problems).

The macro PP_StdDialogs_Option affects the UStandardDialogs.h header by
set t ing the PowerPlant::StandardDialogs namespace (abbreviated to
P P _ S t a n d a r d D i a l o g s in the code) to equal one of
PowerPlant::UNavServicesDialogs, PowerPlant::UConditionalDialogs, or
PowerPlant::UClassicDialogs. When using the class browser to identify classes and
functions, you will often find that the same class or function will appear in each of these three
namespaces and you will need to look at the appropriate one.

The other necessary change to the code for Navigation Services is the need to load them at
application startup and to unload them at application shutdown. This is done in
CDocumentApp’s constructor and destructor. In the constructor, the code uses the macro
SetTryNavServices_ to establish what version it requires and then calls the function
P P _ S t a n d a r d D i a l o g s : : L o a d () . In the destructor, the code calls
PP_StandardDialogs::Unload().

As a final touch, I have also added B N D L, o p e n, and kind resources to
AppResources.rsrc. This provides us with custom icons and the finder with information
about what types of files we can open.

DIRTY DOCUMENTS

Before discussing the methods used to open and save files, we will discuss how
PowerPlant determines if a file has been modified (in other words, if the document is dirty).
The LDocument class has an IsModified() method which should return true if the file has
been modified since last read from disk and false otherwise. This allows the framework to
enable and disable the Save and Revert menu commands appropriately. In order to make
the system work, we will need to use the SetModified() functions when the file has been
saved to the disk and when it has been modified by the user.

The first change to the code adds an iAmModified data member to the CHTMLTextView
class. The LTextEditView class from which it derives provides the virtual method
UserChangedText() which will be called anytime the user types (or deletes) something
from the LTextEditView.

UserChangedText() in CHTMLTextView.cp
void CHTMLTextView::UserChangedText()
{

if (IsModified() == false)
{

SetUpdateCommandStatus(true);
SetModified(true);

}

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

}
The code only needs to do something if this is the first modification. In that case the code

tells the menus that they will need to be updated and then sets the object’s flag to indicate that
it has been modified. If you directly manipulate the text in an LTextEditView, the
UserChangedText() method will not be called automatically. In our case, the
InsertTag() method needs to indicate that it has modified the document and it does this
with a call to UserChangedText(). The IsModified() and SetModified() methods of
CHTMLView are inline functions which access and set the object’s flag.

In the CTextDocument class, we change the IsModified() method so that it checks its
CHTMLTextView’s IsModified() method before returning a result. In addition, we update
the SetModified() method so that it also calls the CHTMLTextView’s SetModified()
method. Note that PowerPlant does some housekeeping in LDocument’s SetModified()
method and so we call it from within the new method definition. You could also just copy the
code, but that would mean that you would need to update your code if more housekeeping
was done within LDocument’s method.

OPENING FILES

We are now ready to consider how PowerPlant opens and saves files. The code presented
here is modeled on the code in the stationery files provided with PowerPlant. There is one
limitation with the strategy employed there that may make it unsuitable for your application.
The problem arises because of the need to call ::NavCompleteSave() if Navigation Services
have been used to save the file. The code in the PowerPlant stationery handles this by holding
the file open on the disk until the document is closed. This allows the CTextDocument object
to save the information necessary for the call to ::NavCompleteSave() until the document
is closed. The disadvantage is that the file cannot be manipulated by another application while
it is held open by HTMLedit. If you need to allow external tools to modify files while your
application holds them open, you will need to adjust the code to permit this.

The first change in the code is the removal of some lines that were added in the first article.
Now that our application can open files, the lines in FindCommandStatus() which disabled
the open command can be removed. There is no need to change ObeyCommand() since
PowerPlant’s LDocApplication class already has the necessary code. Two CDocumentApp
methods are necessary for opening files. The first, ChooseDocument(), interacts with the
user to determine which file should be opened and the second, OpenDocument(), opens the
document. We start with ChooseDocument().

ChooseDocument in CDocumentApp.cp
void
CDocumentApp::ChooseDocument()
{

LFileChooser theChooser;

NavDialogOptions* theOptions =
theChooser.GetDialogOptions();

if (theOptions != 0)
{

theOptions->dialogOptionFlags |= kNavSelectAllReadableItem;
}

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

if (theChooser.AskOpenFile(LFileTypeList()))
{

AEDescList theDocList;
theChooser.GetFileDescList(theDocList);
SendAEOpenDocList(theDocList);

}
}

There are really three LFileChooser classes, one in each of the namespaces mentioned
earlier. At the top of the source file, the code indicates that the one in
PowerPlant::StandardDialogs should be used. Therefore, the actual class used will be
determined by the macros in the prefix file. All three of the LFileChooser classes allow you
to obtain a pointer to a NavDialogOptions structure. The pointer will be 0 if the application
is using classic dialogs. If the application is running under Navigation Services, we adjust the
flags so that All Readable Items is the default choice from the popup menu in the dialog.

Next, the code creates an LFileTypeList (the default constructor uses the open resource
with ID 128). In the case of HTMLedit, only TEXT files can be opened. If AskOpenFile()
returns true, then the user requested a file be opened, and the code gets the AEDescList
that describes the file from theChooser and sends an Open Apple Event to the application.
PowerPlant will convert this Apple Event into a call to OpenDocument(). One nice feature is
that there was almost no need to write separate code for the three possible situations
(Navigation, Conditional, and Classic). Furthermore, you obtain the ability to open multiple
files under Navigation Services without doing any extra work: PowerPlant will turn these lists
into a sequence of individual open commands. We now turn our attention to the place where
the document is actually opened.

OpenDocument() in CDocumentApp.cp

void
CDocumentApp::OpenDocument(

FSSpec* inMacFSSpec)
{

LDocument* theDoc =
LDocument::FindByFileSpec(*inMacFSSpec);

if (theDoc != 0)
{

ValidateObject_(theDoc);
theDoc->MakeCurrent();

}
else

try
{

theDoc = NEW CTextDocument(this, inMacFSSpec);
ValidateObject_(theDoc);

}
catch(LException& theErr)
{

if (theErr.GetErrorCode() != noErr)
{

throw;

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

}
}

}
First, the code tries to find the document from among the currently open documents using

the static LDocument method FindByFileSpec(). If FindByFileSpec() returns a pointer
to an LDocument, then the code brings it to the front and is finished. If the document is not
already open, then the code needs to create a new document and other than the error
handling, this is accomplished to CTextDocument’s constructor.

The error handling code deserves some mention here. The constructor of CTextDocument
may throw an exception if the document contains more than 32K of text. While this problem is
handled in the OpenFile() method of CTextDocument (presented below), an exception is
the only way to inform the CDocumentApp that the file was not opened. My personal
convention is to use an LException whose error code is noErr to indicate that everything
has been handled but that the document is invalid. When the exception is thrown, DebugNew
will report that the document leaked. If this were a “real” application, I would spend some
time determining whether this is a real leak or if DebugNew cannot handle exceptions thrown
from constructors. Since this is supposed to be a teaching article, I will leave this task as an
exercise for the reader (watch out, Metrowerks pools its memory allocations).

You have now seen all of the significant changes to the CDocumentApp class and we turn
our attention to the CTextDocument class. The CTextDocument constructor is modified
slightly to accept an optional FSSpec. However almost all of the work is passed on to its
OpenFile() method which is where we will pick up the trail. Just as LSingleDoc contains a
pointer to an LWindow as one of its data members, it also contains a pointer to an LFile as
another member. This is the real purpose of the LDocument class: to tie together the visual
presentation (LWindow) with the data on the disk (LFile). The LSingleDoc class assumes
that each document uses only one window and one file. Unlike LWindow which can be
complicated (due to the visual hierarchy), the LFile class is simple. It will take care of
handling the file reference numbers for both the data and resource forks and most of the
methods of the class do exactly what their names indicate.

OpenFile() in CTextDocument.cp
void CTextDocument::OpenFile(FSSpec& inFileSpec)
{

mFile = nil;

try
{

StDeleter<LFile> theFile(NEW LFile(inFileSpec));
ValidateObject_(theFile.Get());

theFile->OpenDataFork(fsRdWrPerm);
StHandleBlock theTextH(theFile->ReadDataFork());
ValidateHandle_(theTextH.Get());
ValidateObject_(myTextView);
myTextView->SetTextHandle(theTextH);
myTextView->SetModified(false);

ValidateObject_(mWindow);
mWindow->SetDescriptor(inFileSpec.name);

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

mIsSpecified = true;

mFile = theFile.Release();
}
catch (LException& theErr)
{

if (theErr.GetErrorCode() == err_32kLimit)
{

UModalAlerts::StopAlert(ALRT_BigFile);
throw LException(noErr);

}
else
{

throw;
}

}
}

The first goal of OpenFile() is to provide an LFile for the CTextDocument object. The
code starts by creating a pointer to an LFile. The StDeleter class is analogous to the
standard library’s auto_ptr template and it is used here so that we do not leak the LFile
pointer if an exception is thrown. The call to the StDeleter’s Get() method returns the
actual pointer and the code verifies that it is valid.

The code then opens the data fork of the LFile, copies the text into a handle (the
StHandleBlock guarantees the memory is deleted at the end of the scope), and passes the
handle to the document’s CHTMLTextView object. Since the data in the CHTMLTextView is
fresh from the disk, the code indicates that the CHTMLView is unmodified.

The code then sets the title of the window to match the name of the file. The
mIsSpecified data member of the LDocument class indicates that this document has a file
associated with it (important since it determines if the Revert command is valid). If
everything went well, the code sets mFile. The call to Release() causes the StDeleter to
disown the LFile pointer, failing to do this will cause DebugNew to (correctly) report a
double-delete (once when the StDeleter goes out of scope and later in the
CTextDocument’s destructor).

The call to SetTextHandle() will throw an exception if the handle contains more than
32k characters. Since we know how to handle this problem here, we do so. The
UModalAlerts method simply displays an alert stating that the file was too big (you need to
supply the resource and PowerPlant does the rest). Since the code needs to let the calling
function know that the file was not opened and there is no return value, I have opted to throw
an LException with error code noErr. By personal convention, this means that something
bad has happened but that no further remedies are needed. The first place where this error can
be ignored should catch the exception and ignore it (you saw this in the OpenDocument()
method of CDocumentApp). That completes the tour of the code necessary to open files using
PowerPlant.

Although reversion of a document to the data on the disk is not essential, it is easy to add
this ability to a PowerPlant application. PowerPlant stationery assumes that you will do this

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

since it provides the Revert command in its File menu and adding the code usually adds
little work.

DoRevert() in CTextDocument.cp
void CTextDocument::DoRevert()
{

ValidateObject_(mFile);
StHandleBlock theTextH(mFile->ReadDataFork());
ValidateHandle_(theTextH.Get());

ValidateObject_(myTextView);
myTextView->SetTextHandle(theTextH);

SetModified(false);

myTextView->Refresh();
}

The code reads the data from the CTextDocument’s mFile into a handle (using a
StHandleBlock to prevent a leak). Then it updates the text in the CHTMLTextView. The
code then indicates that the document is now clean. The last step is to make a call to
Refresh(). One important thing to be careful with here is that the call to Refresh()
resolves into a call to ::InvalPortRect(). This means that no actual drawing will be done
until the next Update event is handled. Therefore, if you have stopped the event processing
queue, then calls to Refresh() will appear to do nothing.

Although I will not discuss it in this article, I have also made the NameNewDocument()
method a little more sophisticated. In retrospect, this really should have been done in the third
article where we discussed windows. You might want to examine the code on your own. Now
we turn to saving (which is a little more complicated).

SAVING FILES

All saving is handled by the CTextDocument class (and not by the CDocumentApp class).
Three methods need to be implemented for PowerPlant to handle saving files. The first
method, AskSaveAs(), presents the user with a dialog to determine where to save the file.
The second method, DoAESave(), method implements as Save As operation (which handles
the Save Apple Event). The third method, DoSave(), is the method that actually writes the
data to the disk.

The LDocument class has an implementation for AskSaveAs(). Unfortunately, it has not
been updated to handle the need for a ::NavCompleteSave() call under Navigation
Services. In order to handle this, we need to rewrite the AskSaveAs() command as well as
retain a new data member: myFileDesignator.

AskSaveAs() in CTextDocument.cp
Boolean CTextDocument::AskSaveAs(

FSSpec& outFSSpec, Boolean inRecordIt)
{

Boolean didSave = false;

StDeleter<LFileDesignator>
theDesignator(NEW LFileDesignator);

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

ValidateSimpleObject_(theDesignator.Get());

theDesignator->SetFileType(GetFileType());
NavDialogOptions* theOptions =

theDesignator->GetDialogOptions();
if (theOptions != 0)
{

theOptions->dialogOptionFlags |= kNavNoTypePopup;
}

Str255 theDefaultName;
if (theDesignator->AskDesignateFile(

GetDescriptor(theDefaultName)))
{

theDesignator->GetFileSpec(outFSSpec);
if (UsesFileSpec(outFSSpec))
{

if (inRecordIt)
{

SendSelfAE(kAECoreSuite, kAESave, ExecuteAE_No);
}

DisposeOf_(myFileDesignator);
myFileDesignator = theDesignator.Release();

DoSave();

didSave = true;

}
else
{

if (inRecordIt)
{

SendAESaveAs(outFSSpec, GetFileType(),
ExecuteAE_No);

}

if (theDesignator->IsReplacing())
{

ThrowIfOSErr_(::FSpDelete(&outFSSpec));
}

if (myFileDesignator != 0)
{

ValidateSimpleObject_(myFileDesignator);
myFileDesignator->CompleteSave();
DisposeOf_(myFileDesignator);

}

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

myFileDesignator = theDesignator.Release();

DoAESave(outFSSpec, fileType_Default);

didSave = true;
}

}

return didSave;
}

The first thing the code does is to create a new LFileDesignator (again, a StDeleter is
used to prevent leaks). Before interacting with the user, we need to adjust some settings for the
dialog. Just as with the LFileChooser in ChooseDocument() above, the
GetDialogOptions() will return 0 if it is running under classic dialogs. We adjust the
options so that the user will not be presented with a type popup menu. This is consistent with
the fact that we only save TEXT documents from this application. The code also sets the default
name for the file to the name of the window.

The call to AskDesignateFile() returns true if the user has decided to save the file
(and false if they cancel the dialog). All the information obtained from the dialog is available
through theDesignator. The first thing we do is set outFSSpec to the FSSpec obtained
from interaction with the user. Then we determine if the document’s existing file is being
overwritten or the document is writing to another file. The two possibilities are similar and we
discuss them in parallel.

In both cases the first thing the code does is to send the application an Apple Event if the
application’s Apple Events are being recorded. The actual Apple Event sent is different, but
the code is very similar. The parameter ExecuteAE_No indicates that the Apple Event should
not be executed once it is received. This is appropriate since the command is being handled
here and there is no need for the code to save the file twice.

If the user is saving to a different file and that file already exists, then the file needs to be
deleted and this is done next (in the second branch). Now it is time to handle the changes to
the myFileDesignator data member. If we are overwriting our original file on disk, then the
old LFileDesignator is deleted and the new designator is saved. Since the file is not being
closed, the code does not need to call CompleteSave(). In the other case (where the file on
the disk is changing and the LFileDesignator is not 0) the code calls CompleteSave()
before disposing of the old LFileDesignator. Next either DoSave() or DoAESave() is
called. In both of these cases, the function will then return true because the file has been
saved.

Next we examine the DoAESave() method. This method implements a Save As command
and calls DoSave() to do the actual work of writing to the disk. Almost all of the code is
generic and you should be able to use it “out of the box.” In fact, only the OSType_Creator
constant is application specific and could easily be factored into a call to a new virtual function
with the name GetCreatorType().

DoAESave() in CTextDocument.cp
void CTextDocument::DoAESave(

FSSpec& inFileSpec, OSType inFileType)
{

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

DisposeOf_(mFile);
mIsSpecified = false;

StDeleter<LFile> theFile(NEW LFile(inFileSpec));
ValidateObject_(theFile.Get());

OSType theFileType = GetFileType();
if (inFileType != fileType_Default)
{

theFileType = inFileType;
}

theFile->CreateNewFile(OSType_Creator, theFileType);
theFile->OpenDataFork(fsRdWrPerm);
theFile->OpenResourceFork(fsRdWrPerm);

mFile = theFile.Release();

DoSave();

ValidateObject_(mWindow);
mWindow->SetDescriptor(inFileSpec.name);

mIsSpecified = true;
}

Since this is a Save As operation, the code first eliminates the existing LFile object. This
does not delete the file on the disk, but it will close the file if necessary. Notice that this is done
even before we know that the new file is valid. My reasoning is that after an attempted Save
As command, the goal is to protect the original file’s data (and prevent a Save command from
clobbering it). The DisposeOf_ macro will set the mFile data member to 0 and setting
mIsSpecified to false will prompt the user with another AskSaveAs() dialog if they try to
close the window after a failed Save As command.

Next, the code creates the file on the disk (with another StDeleter). Once we know the
file has been successfully created and opened, the CTextDocument object will take control of
the LFile pointer (again the call to Release() is important to avoid a double-delete). The
DoSave() command expects that both the resource and data forks of the file are open for
writing. Once DoSave() writes the data to the disk, the document’s window title is updated
and its mIsSpecified data member is set to true. We now turn our attention to the one
method that requires knowledge of the data layout in the files: DoSave().

DoSave() in CTextDocument.cp
void CTextDocument::DoSave()
{

ValidateObject_(myTextView);
Handle theTextH = myTextView->GetTextHandle();
ValidateHandle_(theTextH);
SizetheTextSize = ::GetHandleSize(theTextH);

StHandleLocker theLock(theTextH);

ValidateObject_(mFile);

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

mFile->WriteDataFork(*theTextH, theTextSize);

SetModified(false);
}

Saving text files is rather simple: get a handle to the text and write it out to the file’s data
fork. The last line indicates that the document currently matches the data on the disk.
Somewhat anti-climatic, but it works. The actual PowerPlant stationery file saves some
information in the resource fork as well, but I will leave that for you to explore on your own.

CONCLUDING REMARKS

Although Opening, Reverting and Saving files requires a significant amount of code, most
of the work is done by PowerPlant. In fact, of the methods you need to implement, most of
them can be lifted almost verbatim from the PowerPlant stationery files. At this point, I think I
have covered the code presented in the PowerPlant Advanced stationery file (with a few
omissions that you should be able to work out using the class browser and debugger). In the
next article (the fifth of this series), I will spend some time talking about control classes which
can be used to liven up your dialogs. Once that topic is covered, I feel I will have covered the
essential core of PowerPlant. At this point, I will reiterate my request that people should
indicate what topics they would like to see. Here is a short list of topics I have considered:
more on menus, more on panes, threads, drag & drop, tables, actions (and undo strategies),
Apple Events, contextual menus. I am flexible and willing to look at other topics if they are
suggested.

POWERPLANT REFERENCES

I could not find as many references on files as on some of the other topics, there is a single
chapter in The PowerPlant Book entitled “File I/O”. You should also spend some time sifting
through the source code of PowerPlant as well as the example files (there is a StdDialogs
demo as well as a TextDocument demo).

