
MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

POWERPLANT WORKSHOP
By Aaron Montgomery

Basic Dialogs
How one goes about writing a PowerPlant application

About the author...

Aaron teaches in the Mathematics Department at Central Washington University in
Ellensburg, WA. Outside of his job, he spends time riding his mountain bike, watching movies
and entertaining his wife and two sons. You can email him at montgoaa@cwu.edu, try to
catch his attention in the newsgroup comp.sys.mac.oop.powerplant or visit his web site
at mac69108.math.cwu.edu:8080/.

THESE ARTICLES

This is the fifth article in a series of articles about Metrowerks’ PowerPlant application
framework. The first article introduced how the framework deals with commands, the second
article discussed the debugging facilities of the framework, the third introduced windows, and
the fourth article tacked file classes. This article completes the discussion of the core of
PowerPlant by discussing the way PowerPlant handles dialogs. This series assumes familiarity
with the C++ language, the Macintosh Toolbox API and the CodeWarrior IDE. The articles
were written using CodeWarrior 6 with the net-update to IDE 4.1.0.3 and no other
modifications. Throughout this and future articles, I will assume that you are using the class
browser and the debugger to explore the PowerPlant code more fully.

BROADCASTERS AND LISTENERS

We have talked about the command chain that PowerPlant uses to convert menu selections
to code calls, but trying to pass all of the user interaction with a dialog box through this chain
would be cumbersome. Fortunately, PowerPlant offers an alternative method of linking
different classes together through its LBroadcaster and LListener classes. Each
LBroadcaster object keeps a list of LListeners and can broadcast a message to the objects
in its list. The broadcast is done by calling each LListener’s ListenToMessage() method.
This method takes two parameters. The first, of type MessageT, describes the message being
broadcast. The second, of type void*, allows the LBroadcaster object to pass message
specific data to the LListener object.

Although this article focuses dialogs, the LBroadcaster and LListener classes can also
be used in other places. For example, the LGrowZone class (mentioned in the second article)
broadcasts a message when it needs more memory. If you have a class that can release
memory in a pinch, you might want to make it an LListener and register it with the
LGrowZone object.

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

In the case of dialogs, the control classes are LBroadcasters and will broadcast their
message whenever they are adjusted. This means that if you want something to happen when
a control is adjusted, you can create an LListener and have it listen to that control. This
means that much of the code for dynamic effects in dialogs can be placed in separate classes
and linked to the dialog before it is presented to the user.

CONSTRUCTOR

Before looking at the resource file, you may want to run HTMLedit and play with the
controls in the dialog (select Preferences… from the Edit menu). Now go to the IDE and
double-click the AppResources.ppob file (which should open in Constructor).

 The Preferences dialog has two LPushButtons (OK and Cancel), an LMultiPanelView
(where everything important happens) and an LTabsControl (to switch between the panels).
The two LPushButtons did not require much set up, but you need to remember to let the
LGADialog know the button IDs for the default and cancel buttons. The LTabsControl
needs to have a valid Value Message. I set the value to SwPa for Switch Panel. This is the
message that will be broadcast when someone clicks on the control. The LTabsControl needs
to have an associated tab# resource which determines the titles of the tabs (as well as icons, if
any are used on the tabs). Unfortunately, I do not think the tab# resource can be edited in
Constructor. You have two choices: add it to the AppResources.rsrc file or open the
AppResources.ppob file in Resourcerer or ResEdit. If you choose to keep the tab#
resource in the AppResources.rsrc file, you will not see the tab names in Constructor.
Because I like to see these while working on the dialog, I added the tab# resource to the
AppResources.ppob file with Resourcerer.

Now to the centerpiece of the dialog: the LMultiPanelView. To add panels to a
LMultiPanelView in Constructor, you select the Panels cell in the Property
Inspector window and then select New Panel from the Edit menu. In this case, there are
three (one for each tab). You then select which PPob resource to associate with each panel. In
our case, we use resources with IDs 10031, 10032 and 10033. The final settings which need to
be made for this resource are the setting of the Switch Message (it should match with the
LTabsControl) and selecting the Listen To SuperView checkbox. The
LMultiPanelView is an LListener and when it hears the Switch Message, it will switch to
another panel. Selecting the Listen To SuperView checkbox adds the LMultiPanelView
object as a listener to the LTabsControl object.

Now it is time to construct the three views that will appear in the LMultiPanelView. The
first is used for determining the file creator of saved files. This LView was created by dragging
an LView from the Catalog window into the AppResources.ppob window and then
changing its Resource ID to 10031. The size of the panel needs to be adjusted to fit inside the
LMultiPanelView. The Visible checkbox needs to be deselected (otherwise, all of the
LViews will appear at once in the LMultiPanelView). The primary control here is a
LRadioGroupView and four LRadioButtons. Since there is no need for the buttons to
broadcast a message when they are hit, they do not need Value Messages. However, since
the code will need to know which button is selected, the Pane IDs need to be set. The Pane
IDs match the appropriate creator code for each application. Notice that there is an older

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

LRadioGroup in the Other tab of the catalog. This has been replaced by the
LRadioGroupView in the Views tab.

The second LView (Resource ID 10032) used in the LMultiPanelView is very simple and
straightforward. One way to save a little work is to duplicate the LView with Resource ID
10031, renumbered it to 10032 and then deleted all of the controls. This means that the new
resource will be the correct size and visibility. This LView has an LStaticText and an
LEditText. The LEditText is given a Pane ID because we will need to be able to access its
contents from the code. The LEditText is from the Appearance tab and replaces the
LEditField in the Panes tab.

The third LView (Resource ID 10033) is the most complicated. Again, creation is done by
duplicating the LView with Resource ID 10031, changing the Resource ID, deleting all the
existing controls and adding new ones. It has an LPopupButton and an LMultiPanelView.
The Message Value for the LPopupButton is SwPa for Switch Panel. The MENU
Resource ID is set to 1002 (you can find this resource in the AppResources.ppob file as
well). The LMultiPanelView uses Resource IDs 10034 and 10035. The Switch Message is
set to S w P a so that it is consistent with the LPopupButton. Unlike the first
LMultiPanelView, this one cannot simply listen to its SuperView and we will examine the
code needed to link the LPopupButton to the LMultiPanelView below. Resources 10034
and 10035 are very basic, consisting of some LCheckboxes and LStaticTexts. The
LCheckboxes have had their Message Values set because the code will need to listen for
their broadcasts.

This concludes our tour of the AppResources.ppob file and we now turn our attention to
the source code. As you build your interface, if you cannot find a control by browsing through
the Catalog window, ask on the comp.sys.mac.oop.powerplant newsgroup. Usually
someone will be able to tell you where it is in the Catalog , suggest a class from the
PowerPlant Archive (at Metrowerks’ web site), or provide a work around.

PREFERENCE CLASS

The CPreferences class handles the application’s preferences. The class consists of a
constructor; a destructor; a method to register used classes; a method to set the preferences via
a dialog; and a method to alert other classes about a change in preferences. We begin with the
constructor.

CPreferences() in CPreferences.cp
CPreferences::CPreferences()
: myFile(StringLiteral_("HTMLedit Prefs"))
{

myFile.OpenOrCreateResourceFork(fsRdWrPerm
OSType_Pref_Creator,
OSType_Pref_FileType,
smSystemScript);

{
StNewResource thePrefs(ResType_Pref,

ResIDT_Pref,
sizeof(SPreferences));

if(!thePrefs.ResourceExisted())
{

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

SPreferences* thePrefsP
= reinterpret_cast<SPreferences*>(

*thePrefs.mResourceH);
thePrefsP->FileType = OSType_Default_Creator;
thePrefsP->Marker = char_Default_Marker;
thePrefsP->LinkUsesTarget

= bool_Default_LinkUsesTarget;
thePrefsP->ImageUsesAlt = bool_Default_ImageUsesAlt;
thePrefsP->ImageUsesBorder

= bool_Default_ImageUsesBorder;

thePrefs.SetResAttrs(resLocked + resPreload);
}

}

myPrefsH = reinterpret_cast<SPreferences**>(
::Get1Resource(ResType_Pref, ResIDT_Pref));

if (myPrefsH == nil)
{

ThrowIfResError_();
ThrowIfNil_(myPrefsH);

}

Update();
}

The data member myFile is of type LPreferencesFile. This class is provided by
PowerPlant to create preference files in the System folder. In this case, the code names the
preference file HTMLedit Prefs and then opens the resource fork (creating it if needed).

The StNewResource class will attempt to open the specified resource and if it does not
exist, it will create the resource. The ResourceExisted() method of that class will return
false if the resource is new and in this case, the code fills the resource with the default
preferences. The code also sets the resource attributes to preload and lock the resource since
we will want to have it available at all times. The resource structure is small and so it is
unlikely to cause an undue memory burden here. When the StNewResource passes out of
scope, the resource will be written into the preference file.

Next the code loads the resource and then passes all of the preferences to those classes
using them. I’ve decided to use a raw resource as a data member instead of using a
StResource . This means that the code needs to call ::ReleaseResource() in
CPreferences’ destructor. I felt that there was no need to use a stack class to handle memory
management because the resource will be loaded until the application quits. If you are going to
add a resource data member to a class in other situations, you should consider using the
StResource class instead of a raw resource.

The most interesting method in the CPreferences class is the Set() method which runs
the dialog. We present the code for this method now.

Set() from CPreferences.cp
void CDocumentApp::CPreferences::Set()
{

StDialogHandler theHandler(PPob_Prefs,
LCommander::GetTopCommander());

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

LWindow* theWindowP = theHandler.GetDialog();

LMultiPanelView* theMPViewP = FindPaneByID_(theWindowP,
PPob_Prefs_MPV,
LMultiPanelView);

theMPViewP->CreateAllPanels();

LRadioGroupView* theRadioGroupP =
FindPaneByID_(theWindowP,

PPob_Prefs_FileType, LRadioGroupView);

theRadioGroupP->SetCurrentRadioID((**myPrefsH).FileType);

LEditText* theFieldP = FindPaneByID_(theWindowP,
PPob_Prefs_Marker,
LEditText);

LStr255 theMarker = (**myPrefsH).Marker;
theFieldP->SetDescriptor(theMarker);

theMPViewP = FindPaneByID_(theWindowP,
PPob_Prefs_MPV2, LMultiPanelView);

theMPViewP->CreateAllPanels();

LPopupButton* thePopupP = FindPaneByID_(theWindowP,
PPob_Prefs_Popup,
LPopupButton);

thePopupP->AddListener(theMPViewP);

LCheckBox* theCheckBoxP = FindPaneByID_(theWindowP,
PPob_Prefs_LinkTarget,
LCheckBox);

theCheckBoxP->SetValue((**myPrefsH).LinkUsesTarget);
LStaticText* theStaticTextP = FindPaneByID_(theWindowP,

PPob_Prefs_LinkTemplate,
LStaticText);

CDynamicLinkText theDynamicLinkText(theStaticTextP,
theCheckBoxP);

//omitted code setting up other panel

theWindowP->Show();

while (true)
{

MessageT theMessage = theHandler.DoDialog();
if (theMessage == msg_Cancel)
{

return;
}
else if (theMessage == msg_OK)

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

{
break;

}
}

(**myPrefsH).FileType =
theRadioGroupP->GetCurrentRadioID();

theFieldP = FindPaneByID_(theWindowP,
PPob_Prefs_Marker, LEditText);

theFieldP->GetDescriptor(theMarker);
(**myPrefsH).Marker = theMarker[1];

//omitted code updating preferences handle

::ChangedResource(reinterpret_cast<Handle>(myPrefsH));
::UpdateResFile(myFile.GetResourceForkRefNum());

Update();
}

Although it looks like a lot of code, there are only four basic steps. First, set the values of
the controls based on the current preferences. Second, set up the dynamic text. Third, run the
dialog box. Fourth, update the preferences based on the user interaction.

The StDialogHandler class was introduced in the third article and one is used here. The
first parameter is the Resource ID of the dialog and the second parameter is the super
commander of the dialog. Since we will need to adjust some of the user interface before
presenting the dialog to the user, we use the GetDialog() method to obtain the dialog
window. We now look at the interesting bits of the code.

The call to CreateAllPanels() is important because we will want to access the panels
prior to user interaction. If you do not call this, the panels of the LMultiPanelView will be
created as the user switches from one panel to another. If the panels were completely static,
this approach would be appropriate. Because we are going to adjust each panel before
presenting it to the user, it is easiest to adjust everything before starting to interact with the
user.

The next call that is new is the call to AddListener(). This call links the LPopupButton
in the third panel to the LMultiPanelView in the third panel. Both the LTabsControl class
and the LPopupButton class pass the tab or item number chosen as the void* parameter in
their call to ListenToMessage(). This is exactly what the LMultiPanelView class expects
and so there is no need for any additional code to make the LMultiPanelView objects work.

The line creating a CDynamicLinkText object will be explained below. What is
convenient is that in this code, simply the creation of these objects is all that is necessary to
generate dynamic effects in the dialog. The actual code to do that work does not need to clutter
up the code handling the user interaction with the dialog.

Next we show the window and let the StDialogHandler object run the dialog. The
return value from DoDialog() will be the last message broadcast by an LBroadcaster in
the dialog box (the StDialogHandler is an LListener that listens to the controls in the
dialog). The only two messages we need to concern ourselves with are the msg_Cancel and

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

msg_OK, all the other messages are handled by other LListener objects. The remainder of the
code is straightforward, we obtain the values from the dialog and update the preferences.

We will not discuss the Update() method but its code is straight forward (calling a
number of methods to update the user preferences in those classes that use them). We now
turn our attention to the CDynamicLinkText and CDynamicImageText classes.

CDYNAMICLINKTEXT & CDYNAMICIMAGETEXT

These two classes are responsible for dynamically updating LStaticText objects in the
dialog as the user checks and unchecks LCheckBox controls in the dialog. The two classes are
almost identical and we present CDynamicLinkText here. The code is below is presented as
a testament to the ease with which these effects can be accomplished with PowerPlant. Other
than the code to generate the actual text to be displayed, there are under 10 lines of code in the
entire class.

CDynamicLinkText code from CDynamicText.cp
CDynamicLinkText::CDynamicLinkText(

LStaticText* inTextP, LCheckBox* inUseTargetP)
: myTextP(inTextP),

myUseTargetP(inUseTargetP)
{

myUseTargetP->AddListener(this);
SetText();

}

void CDynamicLinkText::ListenToMessage(
MessageT inMessage, void* ioParam)

{
ioParam = ioParam;
if (inMessage == msg_ToggleTarget) { SetText(); }

}

void CDynamicLinkText::SetText()
{

LStr255 theTag = "";
theTag += "<A href=\"";
theTag += '•';
theTag += "\"";
if (myUseTargetP->GetValue())
{

theTag += " target=\"";
theTag += '•';
theTag += "\"";

}
theTag += ">";
theTag += '•';
theTag += "";
theTag += '•';

myTextP->SetDescriptor(theTag);
myTextP->Refresh();

}

MacTech Magazine Writer’s Kit
© 1984-1996, Xplain Corporation. All rights reserved.

CDynamicLinkText is an L L i s t e n e r and its primary method is the
ListenToMessage() method. Its constructor accepts a pointer to an LCheckbox and a
pointer to an LStaticText. When the LCheckbox object is clicked by the user, it will
broadcast a message. The CDynamicLinkText object will receive this message and update
the LStaticText object to reflect the current settings.

OTHER CLASSES

Changes needed to be made to the CDocumentApp class, CHTMLTextView class and the
CTextDocument class in order use these preferences. CDocumentApp now handles the
cmd_Preferences (and passes all of the work off to a static CPreferences data member).
CHTMLTextView and CTextDocument now hold static data members for holding user
preferences as well as methods to set and get this data. If you want to view the actual changes
yourself, search the files CDocumentApp.cp, CHTMLTextView.cp and CTextDocument.cp
for comments starting with //•.

CONCLUDING REMARKS

I haven't covered every useful control that can be placed in a dialog box but should have
given you a feel for how to use Constructor to build the interface and the necessary code to
run the interface. You may have noticed that this article is somewhat shorter than previous
articles. The primary reason is that much of the code for this article has been used in previous
articles (in slightly other contexts). At this point, I believe I have presented you with the tools
to build a basic Macintosh application using PowerPlant (and covered most of The
PowerPlant Book topics in the process). I’m planning on taking a month hiatus but returning
in October. If you have a topic that you would like to see, please send me an e-mail.

POWERPLANT REFERENCES

For more on using the messaging system built into PowerPlant, you will want to read The
PowerPlant Book chapter “Controls and Messaging.” There is also a “Dialogs” chapter in The
PowerPlant Book that covers (not surprisingly) dialogs. Another source of information is the
source code of PowerPlant as well as the example files. I have found the Appearance Demo
and the Grayscale Sample to be particularly useful as they present a variety of different
controls. You can also see more examples of dialogs in the StdDialogs demo.

